Home
Class 12
MATHS
Evaluate : int(0)^((pi)/(2))(sin 2x)/(1+...

Evaluate : `int_(0)^((pi)/(2))(sin 2x)/(1+sin^(2) x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin 2x}{1 + \sin^2 x} \, dx, \] we can follow these steps: ### Step 1: Simplify the Integral We start with the integral as given: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin 2x}{1 + \sin^2 x} \, dx. \] ### Step 2: Use a Substitution We can use the substitution \( t = 1 + \sin^2 x \). To find \( dt \), we differentiate: \[ dt = 2\sin x \cos x \, dx = \sin 2x \, dx. \] This means that \( \sin 2x \, dx = dt \). ### Step 3: Change the Limits of Integration Next, we need to change the limits of integration based on our substitution. - When \( x = 0 \): \[ t = 1 + \sin^2(0) = 1 + 0 = 1. \] - When \( x = \frac{\pi}{2} \): \[ t = 1 + \sin^2\left(\frac{\pi}{2}\right) = 1 + 1 = 2. \] ### Step 4: Rewrite the Integral Now we can rewrite the integral in terms of \( t \): \[ I = \int_{1}^{2} \frac{dt}{t}. \] ### Step 5: Evaluate the Integral The integral of \( \frac{1}{t} \) is \( \ln t \): \[ I = \left[ \ln t \right]_{1}^{2} = \ln 2 - \ln 1. \] Since \( \ln 1 = 0 \), we have: \[ I = \ln 2. \] ### Final Answer Thus, the value of the integral is \[ \boxed{\ln 2}. \] ---
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATION OF DEFINITE INTEGRATION |33 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise DIFFERENTIAL EQUATIONS|38 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise INDEFINITE INTEGRATION|75 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate :int_(0)^((pi)/(2))(sin^(2)x)/(sin x+cos x)dx

Evaluate : int_(0)^(pi//2) sin x dx

Evaluate: int_(0)^((pi)/(2))(sin^(2)x)/(1+sin x cos x)dx

Evaluate: int_(0)^( pi/2)(dx)/(1+sin x)

Evaluate: int_(0)^((pi)/(4))(sin x+cos x)/(9+16sin2x)dx

Evaluate :int_(0)^((pi)/(2))sqrt(1+sin x)dx

Evaluate :int_(0)^((pi)/(2))(sin x+cos x)dx

Evaluate : int_(0)^((pi)/(2)) sin^(2) x dx .

Evaluate : int_(0)^((pi)/(2)) (sin^(2)x)/((1+cos x)^(2)) dx

int_(0)^( pi/2)(sin x)*dx