Home
Class 12
MATHS
Evaluate : int((pi)/(6))^((pi)/(3)) sin^...

Evaluate : `int_((pi)/(6))^((pi)/(3)) sin^(2) x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sin^2 x \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sin^2 x \, dx \] ### Step 2: Use the Identity for \(\sin^2 x\) We can use the trigonometric identity: \[ \sin^2 x = \frac{1 - \cos 2x}{2} \] Substituting this into the integral gives: \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1 - \cos 2x}{2} \, dx \] ### Step 3: Simplify the Integral This can be simplified as: \[ I = \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} (1 - \cos 2x) \, dx \] We can separate the integral: \[ I = \frac{1}{2} \left( \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} 1 \, dx - \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \cos 2x \, dx \right) \] ### Step 4: Evaluate Each Integral 1. The first integral: \[ \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} 1 \, dx = \left[ x \right]_{\frac{\pi}{6}}^{\frac{\pi}{3}} = \frac{\pi}{3} - \frac{\pi}{6} = \frac{\pi}{6} \] 2. The second integral: \[ \int \cos 2x \, dx = \frac{1}{2} \sin 2x \] Therefore, \[ \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \cos 2x \, dx = \left[ \frac{1}{2} \sin 2x \right]_{\frac{\pi}{6}}^{\frac{\pi}{3}} = \frac{1}{2} \left( \sin \frac{2\pi}{3} - \sin \frac{\pi}{3} \right) \] We know that: \[ \sin \frac{2\pi}{3} = \sin \left( \pi - \frac{\pi}{3} \right) = \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2} \] Thus, \[ \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \cos 2x \, dx = \frac{1}{2} \left( \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2} \right) = 0 \] ### Step 5: Combine Results Now substituting back into our expression for \(I\): \[ I = \frac{1}{2} \left( \frac{\pi}{6} - 0 \right) = \frac{\pi}{12} \] ### Final Answer Thus, the value of the integral is: \[ \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sin^2 x \, dx = \frac{\pi}{12} \] ---
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATION OF DEFINITE INTEGRATION |33 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise DIFFERENTIAL EQUATIONS|38 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise INDEFINITE INTEGRATION|75 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_((pi)/(6))^((pi)/(3)) cos x dx .

Evaluate: int_(-(pi)/(2))^((pi)/(2))sin^(2)x cos^(2)x(sin x+cos x)dx

Evaluate : int_(0)^((pi)/(2)) sin^(2) x dx .

Evaluate: int_(-(pi)/(2))^(2 pi)sin^(-1)(sin x)dx

Evaluate : int_(-pi//2)^(pi//2) |sin x|dx

Evaluate: int_(-(3 pi)/(2))^(-(pi)/(2))[(x+pi)^(3)+cos^(2)(x+3 pi)]dx

Evaluate int_(-(pi)/(2))^(pi/2) sin^(3)xcos^(2)x(sinx+cosx)dx .

Evaluate : int_(-pi//4)^(pi//4) |sin x|dx

Evaluate : int_(-pi/3)^(pi/3)sin^3 x dx

Evaluate int _(-pi//2)^(pi//4) sin ^(2) x dx .