Home
Class 12
MATHS
Evaluate : int(0)^(pi) cos^(2)x.dx...

Evaluate : `int_(0)^(pi) cos^(2)x.dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{0}^{\pi} \cos^2 x \, dx \), we can follow these steps: ### Step 1: Use the identity for \( \cos^2 x \) We know from trigonometric identities that: \[ \cos^2 x = \frac{1 + \cos 2x}{2} \] Thus, we can rewrite the integral as: \[ \int_{0}^{\pi} \cos^2 x \, dx = \int_{0}^{\pi} \frac{1 + \cos 2x}{2} \, dx \] ### Step 2: Factor out the constant We can factor out \( \frac{1}{2} \) from the integral: \[ = \frac{1}{2} \int_{0}^{\pi} (1 + \cos 2x) \, dx \] ### Step 3: Split the integral Now, we can split the integral into two parts: \[ = \frac{1}{2} \left( \int_{0}^{\pi} 1 \, dx + \int_{0}^{\pi} \cos 2x \, dx \right) \] ### Step 4: Evaluate the first integral The first integral is straightforward: \[ \int_{0}^{\pi} 1 \, dx = x \bigg|_{0}^{\pi} = \pi - 0 = \pi \] ### Step 5: Evaluate the second integral For the second integral, we use the fact that: \[ \int \cos kx \, dx = \frac{1}{k} \sin kx + C \] Thus, \[ \int_{0}^{\pi} \cos 2x \, dx = \frac{1}{2} \sin 2x \bigg|_{0}^{\pi} = \frac{1}{2} (\sin 2\pi - \sin 0) = \frac{1}{2} (0 - 0) = 0 \] ### Step 6: Combine the results Now, substituting back into our expression: \[ = \frac{1}{2} \left( \pi + 0 \right) = \frac{\pi}{2} \] ### Final Answer Thus, the value of the integral \( \int_{0}^{\pi} \cos^2 x \, dx \) is: \[ \frac{\pi}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATION OF DEFINITE INTEGRATION |33 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise DIFFERENTIAL EQUATIONS|38 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise INDEFINITE INTEGRATION|75 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_(0)^(pi//2)cos^(3)x\ dx

Evaluate : int_(0)^(pi) |cos x| dx

Evaluate int_0^(pi/2) cos^2x dx

Evaluate: int_(0)^((pi)/(4))(cos^(2)x)/(cos^(2)x+4sin^(2)x)dx

Evaluate: int_0^(pi//2)cos^2x\ dx

Evaluate: int_0^pi x/(1+cos^2x)dx

int_(0)^(pi) x sin x cos^(2)x\ dx

Evaluate int _(0)^(pi)(x)/(1+ cos^(2)x)dx .

Evaluate int_(0)^((pi)/(2))(cos^(2)x)/(2+sin x+cos x)dx