Home
Class 12
MATHS
Evaluate : int(0)^((pi)/(4)) (cos x)/(4-...

Evaluate : `int_(0)^((pi)/(4)) (cos x)/(4-sin^(2)x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{0}^{\frac{\pi}{4}} \frac{\cos x}{4 - \sin^2 x} \, dx, \] we will use a substitution method. Let's follow the steps: ### Step 1: Substitution Let \( t = \sin x \). Then, the derivative \( dt = \cos x \, dx \). When \( x = 0 \), \( t = \sin(0) = 0 \). When \( x = \frac{\pi}{4} \), \( t = \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \). Thus, we can rewrite the integral in terms of \( t \): \[ I = \int_{0}^{\frac{1}{\sqrt{2}}} \frac{1}{4 - t^2} \, dt. \] ### Step 2: Simplifying the Integral The integral can be expressed as: \[ I = \int_{0}^{\frac{1}{\sqrt{2}}} \frac{1}{4 - t^2} \, dt. \] We can recognize that \( 4 - t^2 \) can be factored as \( 2^2 - t^2 \). This suggests the use of the formula for the integral of the form \( \int \frac{1}{a^2 - x^2} \, dx \). ### Step 3: Using the Integral Formula The formula for the integral is: \[ \int \frac{1}{a^2 - x^2} \, dx = \frac{1}{2a} \log\left|\frac{a+x}{a-x}\right| + C. \] In our case, \( a = 2 \). Thus, we have: \[ I = \frac{1}{2 \cdot 2} \log\left|\frac{2 + t}{2 - t}\right| \bigg|_0^{\frac{1}{\sqrt{2}}}. \] ### Step 4: Evaluating the Limits Now we evaluate the limits: 1. When \( t = \frac{1}{\sqrt{2}} \): \[ \frac{2 + \frac{1}{\sqrt{2}}}{2 - \frac{1}{\sqrt{2}}} = \frac{2 + \frac{1}{\sqrt{2}}}{2 - \frac{1}{\sqrt{2}}} = \frac{2\sqrt{2} + 1}{2\sqrt{2} - 1}. \] 2. When \( t = 0 \): \[ \frac{2 + 0}{2 - 0} = 1. \] Thus, we have: \[ I = \frac{1}{4} \left( \log\left(\frac{2\sqrt{2} + 1}{2\sqrt{2} - 1}\right) - \log(1) \right). \] Since \( \log(1) = 0 \), we simplify to: \[ I = \frac{1}{4} \log\left(\frac{2\sqrt{2} + 1}{2\sqrt{2} - 1}\right). \] ### Final Result Thus, the evaluated integral is: \[ I = \frac{1}{4} \log\left(\frac{2\sqrt{2} + 1}{2\sqrt{2} - 1}\right). \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATION OF DEFINITE INTEGRATION |33 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise DIFFERENTIAL EQUATIONS|38 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise INDEFINITE INTEGRATION|75 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/(2))(sin x cos x)/(1+sin^(4)x)dx

Evaluate: int_(0)^((pi)/(4))(sin x+cos x)/(9+16sin2x)dx

Evaluate :int_(0)^((pi)/(2))(x sin x cos x)/(sin^(4)x+cos^(4)x)dx

int_(0)^((pi)/(4))(sin x+cos x)/(9+16sin2x)dx

int_(0)^((pi)/(4))((sin x+cos x)/(3+sin2x))dx

Evaluate :int_(0)^((pi)/(2))(sin x+cos x)dx

Evaluate: int_(0)^((pi)/(4))(cos^(2)x)/(cos^(2)x+4sin^(2)x)dx

Evaluate: int_(0)^((pi)/(2))|sin x-cos x|dx

Evaluate :int_(0)^( pi/4)cos2x sqrt(4-sin2x)dx

Evaluate :int_(0)^((pi)/(2))(a sin x+b cos x)/(sin((pi)/(4)+x))dx