Home
Class 12
MATHS
Evaluate : int(0)^(9) (sqrtx)/(sqrtx+sqr...

Evaluate : `int_(0)^(9) (sqrtx)/(sqrtx+sqrt(9-x)) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{0}^{9} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{9 - x}} \, dx, \] we can use a property of definite integrals. We will first find a second expression for the integral by substituting \( x \) with \( 9 - x \). ### Step 1: Substitute \( x \) with \( 9 - x \) Let \( u = 9 - x \). Then, \( dx = -du \). The limits change as follows: - When \( x = 0 \), \( u = 9 \) - When \( x = 9 \), \( u = 0 \) Thus, we can rewrite the integral as: \[ I = \int_{9}^{0} \frac{\sqrt{9 - u}}{\sqrt{9 - u} + \sqrt{u}} (-du) = \int_{0}^{9} \frac{\sqrt{9 - u}}{\sqrt{9 - u} + \sqrt{u}} \, du. \] ### Step 2: Rewrite the integral Now we have two expressions for \( I \): 1. \[ I = \int_{0}^{9} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{9 - x}} \, dx \] 2. \[ I = \int_{0}^{9} \frac{\sqrt{9 - x}}{\sqrt{9 - x} + \sqrt{x}} \, dx. \] ### Step 3: Add the two expressions for \( I \) Now, let's add both expressions for \( I \): \[ 2I = \int_{0}^{9} \left( \frac{\sqrt{x}}{\sqrt{x} + \sqrt{9 - x}} + \frac{\sqrt{9 - x}}{\sqrt{9 - x} + \sqrt{x}} \right) dx. \] ### Step 4: Simplify the integrand Notice that the two fractions can be combined: \[ \frac{\sqrt{x}}{\sqrt{x} + \sqrt{9 - x}} + \frac{\sqrt{9 - x}}{\sqrt{9 - x} + \sqrt{x}} = \frac{\sqrt{x}(\sqrt{9 - x} + \sqrt{x}) + \sqrt{9 - x}(\sqrt{x} + \sqrt{9 - x})}{(\sqrt{x} + \sqrt{9 - x})(\sqrt{9 - x} + \sqrt{x})}. \] This simplifies to: \[ \frac{\sqrt{x} + \sqrt{9 - x}}{\sqrt{x} + \sqrt{9 - x}} = 1. \] ### Step 5: Evaluate the integral Thus, we have: \[ 2I = \int_{0}^{9} 1 \, dx = [x]_{0}^{9} = 9 - 0 = 9. \] ### Step 6: Solve for \( I \) Now, we can solve for \( I \): \[ 2I = 9 \implies I = \frac{9}{2}. \] ### Final Answer Thus, the value of the integral is \[ \boxed{\frac{9}{2}}. \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATION OF DEFINITE INTEGRATION |33 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise DIFFERENTIAL EQUATIONS|38 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise INDEFINITE INTEGRATION|75 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

int _(2) ^(7) (sqrtx)/( sqrtx + sqrt ( 9-x)) dx =

Evaluate int _(1) ^(2) (sqrtx)/( sqrt3 -x + sqrtx)dx

Evaluate : int_( 0 )^4 dx/sqrtx

Evaluate the following : int_(0)^(9)(sqrtx)/(sqrtx+sqrt(9-x))dx

Evaluate : int_(0)^(9) (1)/(1+sqrt(x))dx

int _(4) ^(9) (dx)/(sqrtx) =

By completing the following activity, Evaluate int _(2) ^(5) (sqrtx)/( sqrtx + sqrt ( 7 -x))dx

Evaluate ":int_(1)^(4)(sqrt(9-x))/(sqrt(4+x)+sqrt(9-x))dx

Evaluate the following : int_(0)^(a)(sqrtx)/(sqrtx+sqrt(a-x))dx

Evaluate: int_0^1 1/(sqrt(1+x)-sqrtx) dx