Home
Class 12
MATHS
Prove that int(a)^(b) f(x) dx= int(a)^(b...

Prove that `int_(a)^(b) f(x) dx= int_(a)^(b) f(a+b-x) dx`

Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATION OF DEFINITE INTEGRATION |33 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise DIFFERENTIAL EQUATIONS|38 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise INDEFINITE INTEGRATION|75 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

Prove that the equality int_(a)^(b) f(x) dx = int_(a)^(b) f(a + b - x) dx

Prove that : int_(-a)^(a)f(x)dx =2 int_(a)^(0) f(x)dx, if f(x) is even funtion =0 , if f(x) is off fuction.

Prove that int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx

If f(a+b-x)=f(x), then prove that int_(a)^(b)xf(x)dx=(a+b)/(2)int_(a)^(b)f(x)dx

Prove that int_(a)^(b)f(x)dx=(b-a)int_(0)^(1)f((b-a)x+a)dx

Prove that: int_(0)^(2a)f(x)dx=int_(0)^(2a)f(2a-x)dx

Property 4: If f(x) is a comtinuous function on [a;b] then int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx

Statement I int_((pi)/(6))^((pi)/(3))(1)/(1+tan^(3)x) is (pi)/(12) statement II int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx

Prove that int_(0)^(2a)f(x)dx=int_(a)^(a)[f(a-x)+f(a+x)]dx