Home
Class 12
MATHS
Evaluate: int(0)^(1) (1)/(sqrt(3+2x-x^(2...

Evaluate: `int_(0)^(1) (1)/(sqrt(3+2x-x^(2))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{0}^{1} \frac{1}{\sqrt{3 + 2x - x^2}} \, dx, \] we will manipulate the expression under the square root to make it easier to integrate. ### Step 1: Rewrite the expression under the square root We start with the expression \(3 + 2x - x^2\). We can rearrange it as follows: \[ 3 + 2x - x^2 = - (x^2 - 2x - 3). \] Next, we factor the quadratic: \[ x^2 - 2x - 3 = (x - 3)(x + 1). \] Thus, we have: \[ 3 + 2x - x^2 = -((x - 3)(x + 1)). \] ### Step 2: Complete the square To make the expression a perfect square, we can rewrite it as: \[ 3 + 2x - x^2 = 4 - (x - 1)^2. \] This is because: \[ 4 - (x - 1)^2 = 4 - (x^2 - 2x + 1) = 3 + 2x - x^2. \] ### Step 3: Substitute into the integral Now we substitute this back into the integral: \[ I = \int_{0}^{1} \frac{1}{\sqrt{4 - (x - 1)^2}} \, dx. \] ### Step 4: Use trigonometric substitution We can use the substitution \(x - 1 = 2 \sin \theta\), which implies \(dx = 2 \cos \theta \, d\theta\). The limits change as follows: - When \(x = 0\), \(2 \sin \theta = -1\) which gives \(\theta = -\frac{\pi}{6}\). - When \(x = 1\), \(2 \sin \theta = 0\) which gives \(\theta = 0\). Now substituting into the integral: \[ I = \int_{-\frac{\pi}{6}}^{0} \frac{2 \cos \theta}{\sqrt{4 - (2 \sin \theta)^2}} \, d\theta = \int_{-\frac{\pi}{6}}^{0} \frac{2 \cos \theta}{\sqrt{4(1 - \sin^2 \theta)}} \, d\theta = \int_{-\frac{\pi}{6}}^{0} \frac{2 \cos \theta}{\sqrt{4 \cos^2 \theta}} \, d\theta. \] This simplifies to: \[ I = \int_{-\frac{\pi}{6}}^{0} \frac{2 \cos \theta}{2 \cos \theta} \, d\theta = \int_{-\frac{\pi}{6}}^{0} 1 \, d\theta. \] ### Step 5: Evaluate the integral Now we can evaluate the integral: \[ I = \left[ \theta \right]_{-\frac{\pi}{6}}^{0} = 0 - \left(-\frac{\pi}{6}\right) = \frac{\pi}{6}. \] ### Final Answer Thus, the value of the integral is: \[ \boxed{\frac{\pi}{6}}. \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATION OF DEFINITE INTEGRATION |33 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise DIFFERENTIAL EQUATIONS|38 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise INDEFINITE INTEGRATION|75 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_(0)^(1) (-1)/(sqrt(1-x^(2)) )dx

Evaluate :int_(0)^(2)(1)/(sqrt(3+2x-x^(2)))dx

Evaluate :int_(0)^(1)(1)/(sqrt(2x+3))dx

Evaluate : int_(0)^(1) (x)/(sqrt(1+x^(2)))dx

Evaluate : int_(0)^(a) (1)/(sqrt(a^(2) -x^(2))) dx

int_(0)^(1)(1)/(sqrt(3x+2))dx

Evaluate: int_(0)^(1)(1)/(1+x+sqrt(x))dx

Evaluate: int_(0)^(1)(1)/(sqrt(1-x^(2)))sin^(-1)(2x sqrt(1-x^(2)))dx

" 9.Evaluate "int_(0)^(1)(1)/(sqrt(3-2x))dx

Evaluate: int_(0)^(1)(1)/(2x-3)dx