Home
Class 12
MATHS
Evaluate: int(0)^((pi)/(2)) (1)/(5+4 cos...

Evaluate: `int_(0)^((pi)/(2)) (1)/(5+4 cos x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{1}{5 + 4 \cos x} \, dx, \] we can use a substitution involving the tangent function. Let's proceed step by step. ### Step 1: Set up the integral We start with the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{1}{5 + 4 \cos x} \, dx. \] ### Step 2: Use the substitution \( t = \tan\left(\frac{x}{2}\right) \) Using the Weierstrass substitution, we have: \[ \cos x = \frac{1 - t^2}{1 + t^2} \quad \text{and} \quad dx = \frac{2}{1 + t^2} \, dt. \] When \( x = 0 \), \( t = 0 \), and when \( x = \frac{\pi}{2} \), \( t \to 1 \). ### Step 3: Substitute into the integral Substituting these into the integral, we get: \[ I = \int_{0}^{1} \frac{2}{1 + t^2} \cdot \frac{1}{5 + 4 \cdot \frac{1 - t^2}{1 + t^2}} \, dt. \] ### Step 4: Simplify the integrand Now simplify the integrand: \[ 5 + 4 \cdot \frac{1 - t^2}{1 + t^2} = 5 + \frac{4(1 - t^2)}{1 + t^2} = \frac{5(1 + t^2) + 4(1 - t^2)}{1 + t^2} = \frac{5 + 5t^2 + 4 - 4t^2}{1 + t^2} = \frac{9 + t^2}{1 + t^2}. \] Thus, the integral becomes: \[ I = \int_{0}^{1} \frac{2}{1 + t^2} \cdot \frac{1 + t^2}{9 + t^2} \, dt = \int_{0}^{1} \frac{2}{9 + t^2} \, dt. \] ### Step 5: Evaluate the integral Now we evaluate: \[ I = 2 \int_{0}^{1} \frac{1}{9 + t^2} \, dt. \] The integral \( \int \frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + C \). Here, \( a^2 = 9 \) so \( a = 3 \): \[ \int \frac{1}{9 + t^2} \, dt = \frac{1}{3} \tan^{-1}\left(\frac{t}{3}\right). \] Thus, we have: \[ I = 2 \left[ \frac{1}{3} \tan^{-1}\left(\frac{t}{3}\right) \right]_{0}^{1} = \frac{2}{3} \left( \tan^{-1}\left(\frac{1}{3}\right) - \tan^{-1}(0) \right) = \frac{2}{3} \tan^{-1}\left(\frac{1}{3}\right). \] ### Final Result Therefore, the value of the integral is: \[ I = \frac{2}{3} \tan^{-1}\left(\frac{1}{3}\right). \] ---
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise APPLICATION OF DEFINITE INTEGRATION |33 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise DIFFERENTIAL EQUATIONS|38 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise INDEFINITE INTEGRATION|75 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/(2))(1)/(4+5cos x)dx=

int_(0)^(pi//2) (1)/(4+3 cos x)dx

Evaluate : int _(0)^(pi//2) 1/(1 + cos x) dx

int_(0)^(pi//2)(1)/(5+4cos x)dx=

Evaluate: int_(0)^((pi)/(2))|sin x-cos x|dx

Evaluate :int_(0)^((pi)/(2))(sin x+cos x)dx

Evaluate : int_(0)^(pi//2) sqrt(1- cos 4x) dx

Evaluate: int_(0)^((pi)/(4))(cos^(2)x)/(cos^(2)x+4sin^(2)x)dx

Evaluate :int_(0)^((pi)/(2))(a sin x+b cos x)/(sin((pi)/(4)+x))dx

Evaluate : int_(0)^((pi)/(2)) (sin^(2)x)/((1+cos x)^(2)) dx