Home
Class 12
MATHS
Is ((1,2),(3,4)) invertible, justify ?...

Is `((1,2),(3,4))` invertible, justify ?

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise PROBLEM|63 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise PROBLEM|19 Videos

Similar Questions

Explore conceptually related problems

If the function f:[1, oo) rarr [ 1,oo) defined by f(x) = 2^(x(x -1)) is invertible, then find f^(-1) (x).

If the fuction f:RrarrR defined by f(x)=3x-4 is invertible, then find f^(-1) .

If f:R to R defined by f(x)=(3x+5)/(2) is an invertible function, then find f^(-1)(x) .

Is the matrix [(1, 0, 0),(1, 1, 1),(2, -1, 1)] invertible?

Find the adjoint of the matrix A=[(1,2),(3,4):}] and verify that A[adj (A)]=|A|I

If f is an invertible function, defined as f(x)= (3x-4)/(5) then write f^(-1) (x).

If A is an invertible matrix of order 2, then find det(A^(-1)) .

If the invertible function f is defined as f(X) = (3x-4)/5 , write f^(-1) (X) .

MODERN PUBLICATION-DETERMINANTS-PROBLEM
  1. Solve the following : [[1+x,1,1],[1,1+x,1],[1,1,1+x]]=0

    Text Solution

    |

  2. Solve the following : [[2,2,x],[-1,x,4],[1,1,1]]=0

    Text Solution

    |

  3. Is ((1,2),(3,4)) invertible, justify ?

    Text Solution

    |

  4. Evaluate the following determinants: [[1^2,2^2,3^2],[2^2,3^2,4^2],[3...

    Text Solution

    |

  5. Prove the following: [[-a^2,ab,ac],[ab,-b^2,bc],[ac,bc,-c^2]]=4a^2b^...

    Text Solution

    |

  6. If Aand B are square matrices of order 3, such that |A| = -1,|B| = 3 t...

    Text Solution

    |

  7. For what k x+2y-3z = 2 (k+3)z = 3 (2k+1) +z = 2 is inconsisten...

    Text Solution

    |

  8. The sum of two non integral roots of [[x,2,5],[3,x,3],[5,4,x]] = 0 is ...

    Text Solution

    |

  9. What is the inverse of A = ((cos alpha,sin alpha),(sin alpha,-cos alph...

    Text Solution

    |

  10. The value of [[1,2,3],[3,5,2],[8,14,20]] is .

    Text Solution

    |

  11. Solve the following : [[x+1,omega,omega^2],[omega,x+omega^2,1],[omega^...

    Text Solution

    |

  12. Prove that the following. [[b+c,a,a],[b,c+a,b],[c,c,a+b]]=4ab

    Text Solution

    |

  13. Solve : [[7,6,x],[2,x,2],[x,3,7]] = 0

    Text Solution

    |

  14. Solve the following : [[1+x,1,1],[1,1+x,1],[1,1,1+x]]=0

    Text Solution

    |

  15. Prove that the following. [[a,b,c],[x,y,z],[p,q,r]]=[[y,b,q],[x,a,p],[...

    Text Solution

    |

  16. Prove that the following. [[a+d,a+d+k,a+d+c],[c,c+b,c],[d,d+k,d+c]]=ab...

    Text Solution

    |

  17. Prove that the following. [[1,1,1],[b+c,c+a,c+a],[b^2+c^2,c^2+a^2,a^2+...

    Text Solution

    |

  18. Prove that [[b^2c^2, bc,b+c],[c^2a^2,ca,c+a],[a^2b^2,ab,a+b]] = 0

    Text Solution

    |

  19. Show that: abs((1,a,a^2),(1,b,b^2),(1,c,c^2))=(a-b)(b-c)(c-a)

    Text Solution

    |

  20. Show that |{:((b+c)^2,a^2,a^2),(b^2,(c+a)^2,b^2),(c^2,c^2,(a+b)^2):}...

    Text Solution

    |