Home
Class 12
MATHS
Solve the following : [[x+1,omega,omega^...

Solve the following : `[[x+1,omega,omega^2],[omega,x+omega^2,1],[omega^2,1,x+omega]]`=0

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise PROBLEM|63 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise PROBLEM|19 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following determinants. [[1,omega,omega^2],[omega,omega^2,1],[omega^2,1,omega]]

if omega be the cube root of unit then what is the value of |[1,omega ,omega^2],[omega, omega^2,1],[omega^2,1,omega ]| ?

Fill in the blanks with appropriate answer from the bracket. [[1,omega,omega^2],[omega,omega^2,1],[omega^2,1,omega]] =_________

If omega is a complex cube root of 1,then for what value of. lamda the determinant |[1,omega,omega^(2)],[omega,lamda,1],[omega^(2),1,omega]|=0 ?

(1-omega +omega^2)(1+omega-omega^2)=4

Evaluate the following determinants. [[1,omega],[-omega,omega]]

IF omega is cube root of unity, then |{:(1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega):}| = ………. (1,0,omega, omega^2)

Evaluate |(1, omega, omega^(2)),(omega, omega^(2),1),(omega^(2),1,omega)| , where omega is a cube root of unity.

MODERN PUBLICATION-DETERMINANTS-PROBLEM
  1. What is the inverse of A = ((cos alpha,sin alpha),(sin alpha,-cos alph...

    Text Solution

    |

  2. The value of [[1,2,3],[3,5,2],[8,14,20]] is .

    Text Solution

    |

  3. Solve the following : [[x+1,omega,omega^2],[omega,x+omega^2,1],[omega^...

    Text Solution

    |

  4. Prove that the following. [[b+c,a,a],[b,c+a,b],[c,c,a+b]]=4ab

    Text Solution

    |

  5. Solve : [[7,6,x],[2,x,2],[x,3,7]] = 0

    Text Solution

    |

  6. Solve the following : [[1+x,1,1],[1,1+x,1],[1,1,1+x]]=0

    Text Solution

    |

  7. Prove that the following. [[a,b,c],[x,y,z],[p,q,r]]=[[y,b,q],[x,a,p],[...

    Text Solution

    |

  8. Prove that the following. [[a+d,a+d+k,a+d+c],[c,c+b,c],[d,d+k,d+c]]=ab...

    Text Solution

    |

  9. Prove that the following. [[1,1,1],[b+c,c+a,c+a],[b^2+c^2,c^2+a^2,a^2+...

    Text Solution

    |

  10. Prove that [[b^2c^2, bc,b+c],[c^2a^2,ca,c+a],[a^2b^2,ab,a+b]] = 0

    Text Solution

    |

  11. Show that: abs((1,a,a^2),(1,b,b^2),(1,c,c^2))=(a-b)(b-c)(c-a)

    Text Solution

    |

  12. Show that |{:((b+c)^2,a^2,a^2),(b^2,(c+a)^2,b^2),(c^2,c^2,(a+b)^2):}...

    Text Solution

    |

  13. Prove that [[1,a,a^2 - bc],[1,b,b^2 - ca],[1,c,c^2 - ab]]

    Text Solution

    |

  14. Prove that the following. [[b+c,c+a,a+b],[q+r,r+p,p+q],[y+z,z+x,x+y]]=...

    Text Solution

    |

  15. Prove that the following. [[1,1,1],[b+c,c+a,c+a],[b^2+c^2,c^2+a^2,a^2+...

    Text Solution

    |

  16. Factorize the following. [[a,b,c],[b+c,c+a,a+b],[a^2,b^2,c^2]]

    Text Solution

    |

  17. Prove the following : [[1,x,x^2],[x^2,1,x],[x,x^2,1]]=(1-x^3)^2

    Text Solution

    |

  18. Prove that the following. [[b^2+c^2,ab,ac],[ab,c^2+a^2,bc],[ca,cb,a^2+...

    Text Solution

    |

  19. Prove that [[a^2+1,ab,ac],[ab,b^2+1,bc],[ac,bc,c^2+1]] = 1+a^2+b^2+c...

    Text Solution

    |

  20. Show that [[3a,-a+b,-a+c],[-b+a,3b,-b+c],[-c+a,-c+b,3c]] = 3(a+b+c)(ab...

    Text Solution

    |