Home
Class 12
MATHS
If x,y,z are positive and are the pth, q...

If x,y,z are positive and are the pth, qth and rth terms of a G.P. then prove that
`|[logx,p,1],[logy,q,1],[logz,r,1]|=0`

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise PROBLEM|63 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise PROBLEM|19 Videos

Similar Questions

Explore conceptually related problems

If a,b,c are respectively the p^(th),q^(th),r^(th) terms of an A.P.,then prove that a(q-r)+b(r-p)+c(p-q)=0

If a,b,c are respectively the sums of p,q,r terms of an A.P., prove that a/p(q-r)+b/q(r-p)+c/r(p-q)=0

If x^y = e^(x-y) then prove that (dy)/(dx)=logx/(1+logx)^2 .

Find the position of the points (1,2,-1) and (2,-1,3) with respect to the plane x+3y+z+1=0 .

Prove that: |[1, 1+p, 1+p+q],[2, 3+2p, 1+3p+2p], [3, 6+3p, 1+6p+3q ]|= 1

If f:X to Y and g:Y to Z be two bijective functions, then prove that (gof)^(-1) =f^(-1)og(-1) .

If P (1,y,z) lies on the line through (3,2,-1) and (-4,6,3) find y & z.

MODERN PUBLICATION-DETERMINANTS-PROBLEM
  1. Prove that [[b^2c^2, bc,b+c],[c^2a^2,ca,c+a],[a^2b^2,ab,a+b]] = 0

    Text Solution

    |

  2. Show that: abs((1,a,a^2),(1,b,b^2),(1,c,c^2))=(a-b)(b-c)(c-a)

    Text Solution

    |

  3. Show that |{:((b+c)^2,a^2,a^2),(b^2,(c+a)^2,b^2),(c^2,c^2,(a+b)^2):}...

    Text Solution

    |

  4. Prove that [[1,a,a^2 - bc],[1,b,b^2 - ca],[1,c,c^2 - ab]]

    Text Solution

    |

  5. Prove that the following. [[b+c,c+a,a+b],[q+r,r+p,p+q],[y+z,z+x,x+y]]=...

    Text Solution

    |

  6. Prove that the following. [[1,1,1],[b+c,c+a,c+a],[b^2+c^2,c^2+a^2,a^2+...

    Text Solution

    |

  7. Factorize the following. [[a,b,c],[b+c,c+a,a+b],[a^2,b^2,c^2]]

    Text Solution

    |

  8. Prove the following : [[1,x,x^2],[x^2,1,x],[x,x^2,1]]=(1-x^3)^2

    Text Solution

    |

  9. Prove that the following. [[b^2+c^2,ab,ac],[ab,c^2+a^2,bc],[ca,cb,a^2+...

    Text Solution

    |

  10. Prove that [[a^2+1,ab,ac],[ab,b^2+1,bc],[ac,bc,c^2+1]] = 1+a^2+b^2+c...

    Text Solution

    |

  11. Show that [[3a,-a+b,-a+c],[-b+a,3b,-b+c],[-c+a,-c+b,3c]] = 3(a+b+c)(ab...

    Text Solution

    |

  12. Show that the homogenous system of equations x-2y+z = 0 x+y-z = 0 ...

    Text Solution

    |

  13. Prove that the following. [[a-b-c,2a,2a],[2b,b-c-a,2b],[2c,2c,c-a-b]]=...

    Text Solution

    |

  14. Examining consistency and solvability, solve the following equation by...

    Text Solution

    |

  15. Prove the following: [[(b+c)^2,a^2,bc],[(c+a)^2,b^2,ca],[(a+b)^2,c^2...

    Text Solution

    |

  16. Prove the following: [[a+b+c,-c,-b],[-c,a+b+c,-a],[-b,-a,a+b+c]] =...

    Text Solution

    |

  17. Prove the following: |[ax-by-cz,ay+bx,az+cx],[bx+ay,by-cz-ax,bz+cy],...

    Text Solution

    |

  18. If [[x,x^2,x^3-1],[y,y^2,y^3-1],[z,z^2,z^3-1]]=0 then prove that xyz...

    Text Solution

    |

  19. If x,y,z are positive and are the pth, qth and rth terms of a G.P. the...

    Text Solution

    |

  20. If 2s=a+b+c show that [[a^2,(s-a)^2,(s-a)^2],[(s-b)^2,b^2,(s-b)^2],[...

    Text Solution

    |