Home
Class 12
MATHS
If f(x)=logx^(2)(logx), then f(e)...

If `f(x)=log_x^(2)(logx)`, then `f(e)`

Promotional Banner

Topper's Solved these Questions

  • AREA UNDER PLANE CURVES

    MODERN PUBLICATION|Exercise PROBLEM|2 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise PROBLEM|44 Videos

Similar Questions

Explore conceptually related problems

If f(x)=log(logx) , then find f.(e ).

If f(x) = log_e ((1-x)/(1+x)) , then prove that f(x) + f(y) = f((x + y)/(1 + xy))

If f(x)=xcosx+e^(x) , then find f.(0) .

If f(x)=cos log_e^x then f(x)*f(y)-1/2[f(xy)+f(x/y)]=

If : f(x) =log ((1+x)/(1-x)), then show that f(a)+f(b)=f ((a+b)/(1+ab)) and 2f(x)=f ((2x)/(1+x^2)).

If y=(logx)/(x) , then find (dy)/(dx)

If f(x) = cos(log_ex) then show that f(x).f(y)-1/2[f(xy) + f(x/y)]=0

If y=3cos(logx)+4sin(logx) , then show that x^(2)y_(2)+xy_(1)+y=0 .