Home
Class 12
MATHS
If x=acos^(3)theta,y=a sin^(3)theta,then...

If `x`=`acos^(3)theta`,`y`=`a sin^(3)theta`,then find `(d^2y)/dx^(2)`

Promotional Banner

Topper's Solved these Questions

  • AREA UNDER PLANE CURVES

    MODERN PUBLICATION|Exercise PROBLEM|2 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise PROBLEM|44 Videos

Similar Questions

Explore conceptually related problems

If x=asec^(3)theta,y=atan^(3)theta then find (d^(2)y)/(dx^(2)) at theta=pi/4 .

If x=acos^30theta,y=bsin^30theta, find dy/dx .

Find the slope of the normal to the curve x = a cos^(3) theta and y = a sin^(3) theta "at" theta = (pi)/(4)

If x=a(theta+sintheta) and y=a(1-cos theta) , then find (d^(2)y)/(dx^(2)) at theta=(pi)/(2) .

If x = 2costheta-cos2theta , y = 2sintheta-sin2theta then find d^(2)y/dx^(2) at theta =pi/2 .

If x=asec theta, y=b tan theta , then prove that (d^(2)y)/(dx^(2))=-(b^(4))/(a^(2)y^(3))

If x=a cos theta and y=bcos theta , then find (dy)/(dx) .