Home
Class 12
MATHS
|[(1)/(a),a^(2),bc],[(1)/(b),b^(2),ca],[...

`|[(1)/(a),a^(2),bc],[(1)/(b),b^(2),ca],[(1)/(c),c^(2),ab]|=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show without expanding at any stage that: [1/a, a^2, bc],[1/b, b^2, ca],[1/c, c^2, ab]|=0

|[1,a^(2),bc],[1,b^(2),ca],[1,c^(2),ab]|

|[a,a^(2),bc],[b,b^(2),ca],[c,c^(2),ab]|=|[1,a^(2),a^(3)],[1,b^(2),b^(3)],[1,c^(2),c^(3)]|

Prove the following : |{:(a,b,c),(a^(2),b^(2),c^(2)),(bc,ca,ab):}|=|{:(a,a^(2),bc),(b,b^(2),ca),(c,c^(2),ab):}|=(ab+bc+ca)(a-b)(b-c)(c-a) .

The value of |(a,a^(2) - bc,1),(b,b^(2) - ca,1),(c,c^(2) - ab,1)| , is

Without expanding the determinant , prove that |{:(a, a^(2),bc),(b,b^(2),ca),(c,c^(2),ab):}|=|{:(1,a^(2),a^(3)),(1,b^(2),b^(3)),(1,c^(2),c^(3)):}|

The value of the determinant |{:(1,a, a^(2)-bc),(1, b, b^(2)-ca),(1, c, c^(2)-ab):}| is…..

Prove that |[(a+b)^(2),ca,bc],[ca,(b+c)^(2),ab],[bc,ab,(c+a)^(2)]|=2abc(a+b+c)^(3)