Home
Class 12
MATHS
If x^m y^n=(x+y)^(m+n), prove that (dy)/...

If `x^m y^n=(x+y)^(m+n),` prove that `(dy)/(dx)=y/x` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(m)*y^(n)=(x+y)^(m+n), show that (dy)/(dx)=(y)/(x)

If x^(m)y^(n)=(x+y)^(m+n), prove that (d^(2)y)/(dx^(2))=0

If x^(m)y^(n)=(x+y)^(m+n), prove that (d^(2)y)/(dx^(2))=0

If x^(m)y^(n)=(x+y)^(m+n), prove that (d^(2)y)/(dx^(2))=0

If x^(m)y^(n)=(x+y)^(m+n) , prove that : (d^(2)y)/(dx^(2))=0 .

If x^(m)y^(n)=1, prove that (dy)/(dx)=-(my)/(nx)

If sec((x+y)/(x-y))=a, prove that (dy)/(dx)=(y)/(x)

If x^(m)*y^(n)=(x+y)^(m+n) then (dy)/(dx) is:

If x^(m)y^(n)=(x+y)^(m+n), then (dy)/(dx) is (x+y)/(xy) (b) xy (c) (x)/(y) (d) (y)/(x)