Home
Class 11
MATHS
The natural number a for which sum(k=1)^...

The natural number `a` for which `sum_(k=1)^nf(a+k)=16(2^n-1)` where the function `f` satisfies the relation `f (x+ y)= f (x) *f (y) `for all natural numbers x, y and further `f (1) =2` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The natural number a for which sum_(k=1)^(n)f(a+k)=16(2^(n)-1) where the function f satisfies the relation f(x+y)=f(x)*f(y) for all natural numbers x,y and further f(1)=2 is

Find the natural number a for which sum_(k=1)^(n)f(a+k)=16(2^(n)-1), where the function f satisfies the relation f(x+y)=f(x)f(y) for all natural number x,y and,further,f(1)=2.

The natural number a for which sum_(k=1,n) f(a+k)=16(2^n-1) where the function f satisfies the relation f(x+y)=f(x).f(y) for all natural numbers x,y and further f(1)=2 is:- A) 2 B) 3 C) 1 D) none of these

The natural number a for which sum_(k=1)^(n)f(a+k)=2n(33+n) where the function f satisfies the relation f(x+y)=f(x)+f(y) for all the natural numbers x,y and further f(1)=4 is

Find the natural number a for which sum_(k=1)^(n)f(a+k)=16(2^(n)-1) where the function f satisfies the relation f(x+y)=f(x).f(y) for all natural numbers and also f(1)=2

Let sum_(k=1)^(10)f(a+k)=16(2^(10)-1), where the function f satisfies f(x+y)=f(x)f(y) for all natural numbers x, y and f(1) = 2. Then, the natural number 'a' is

If a real valued function f(x) satisfies the equation f(x+y)=f(x)+f(y) for all x,y in R then f(x) is

A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y), AA x, y in R . If f'(0) = - 1, then

Suppose f is a function that satisfies the equation f(x+y)=f(x)+f(y)+x^(2)y+xy^(2)? for all real numbers x and y. If lim_(x rarr0)(f(x))/(x)=1 then