Home
Class 11
MATHS
If A=[[x^(2),6,8],[3,y^(2),9],[4,5,z^(2)...

If `A=[[x^(2),6,8],[3,y^(2),9],[4,5,z^(2)]],B^(T)=[[2x,3,5],[2,2y,6],[1,4,2z-3]]` where `x,y,z` are real and trace of `B`= trace of `A^(T)` then `(1)/(x)+(1)/(y)+(1)/(z)-xyz`=

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A=[(x^2,6,8),(3,y^2,9),(4,5,z^2)], B=[(2x,3,5),(2,2y,6),(1,4,2z-3)] If trace A=trace B, then 2x+y+z is equal to

Let A=[{:(x^(2),6,8),(3,y^(2),9),(4,5,z^(2)):}],B=[{:(2x,3,5),(2,2y,6),(1,4,2z-3):}] . If trace A = trace B, then x+y+z is equal to ________

If x,y,z are real and 4x^(2)+9y^(2)+16z^(2)=2xyz{(6)/(x)+(4)/(y)+(3)/(z)}

If [(1,2,3),(2,4,1),(3,2,9)][(x),(y),(z)]=[(6),(7),(14)] , then the values of x, y, z respectively are

If {:[(x-2,y-3),(z+1,t-4)]:}={:[(1,4),(2,3)]:} then find x,y,z and t.

If |[x^3+1, x^2, x] , [y^3+1, y^2, y] , [z^3+1, z^2, z]|=0 and x, y, z are all different then prove that xyz=-1