Home
Class 12
MATHS
Prove that the distance of the roots of ...

Prove that the distance of the roots of the equation `|sintheta_1|z^3+|sintheta_2|z^2+|sintheta_3|z+|sintheta_4|=|3|` from z=0 is greater than `2//3.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that the distance of the roots of the equation |sin theta_(1)|z^(3)+|sin theta_(2)|z^(2)+|sin theta_(3)|z+|sin theta_(4)|=3 from z=0 is greater than 2/3.

sqrt(3)costheta+sintheta=2

If cos^2theta-sintheta=1/4 then sintheta=?

If 3sintheta+5costheta=3 , then 5sintheta-3costheta=?

If sintheta_1+sintheta_2+sintheta_3=3, evaluate : costheta_1+costheta_2+costheta_3 .

if sintheta+costheta=3/2 then find sintheta.costheta

Prove that- 1-cos^2theta/(1+sintheta)=sintheta

If sintheta+costheta=sqrt(2)sintheta , then sintheta-costheta=?

(i) If tantheta=(a)/(b) ,then find the value of (2sintheta-3costheta)/(2sintheta+3costheta)