Home
Class 11
MATHS
If D = |(1,1,1),(1,1 +x,1),(1,1,1 +y)| "...

If `D = |(1,1,1),(1,1 +x,1),(1,1,1 +y)| " for " x!= 0, y != 0`, then D is divisible by

Promotional Banner

Similar Questions

Explore conceptually related problems

If D = |{:(1,1,1),(1,1+x,1),(1,1,1+y):}|"for" " "xne0,yne0 then D is

If D=|1 1 1 1 1+x1 1 1 1+y|"f o r"x!=0, y!=0 then D is (1) divisible by neither x nor y (2) divisible by both x and y (3) divisible by x but not y (4) divisible by y but not x

if x ne 0 , y ne 0 ,z ne 0 " and " |{:(1+x,,1,,1),(1+y,,1+2y,,1),(1+z,,1+z,,1+3z):}|=0 then x^(-1) +y^(-1) +z^(-1) is equal to

If [(1,0,0 ), (0,-1,0), (0,0, -1)][(x),(y),( z)]=[(1),(0),(1)] , find x ,\ y\ a n d\ z .

If [(1, 0 ,0 ),(0,y,0),( 0, 0, 1)][(x),(-1),(z)]=[(1),( 0),( 1)] , find x ,\ y\ a n d\ z .

If A=[(1,x),(x^(2),4y)] and B=[(-3,1),(1,0)], adj(A)+B=[(1,0),(0,1)] then the values of x and y are

If [(1,2,-3),(0,4,5),(0,0,1)][(x),(y),(z)]=[(1),(1),(1)] , then (x, y, z) is equal to

If [(1 ,0, 0) ,(0 ,1, 0),( 0 ,0 ,1)][(x),( y),( z)]=[(1),(-1),( 0)] , find x ,\ y\ a n d\ z .