Home
Class 12
MATHS
If bar a ,bar b,bar c are three vectors...

If `bar a ,bar b,bar c` are three vectors such that `|bara|=|bar c|=1,|bar b|=4,|bar b xx bar c|=2` and `2bar b=bar c+lambda bar a`. then `lambda=` (A) `sqrt(65-8sqrt3)` (B) `sqrt17` (C) `sqrt3` (D) `sqrt(17/2(2+sqrt3))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If bar(a),bar(b),bar(c) are three vectors such that |bar(a)|=|bar(c)|=1,|bar(b)|=4,|bar(b)xxbar(c)|=2 and 2bar(b)=bar(c)+lambdabar(a). then lambda=(A)sqrt(65-8sqrt(3))(B)sqrt(17)(C)sqrt(3)(D)sqrt((17)/(2)(2+sqrt(3)))

If bar(a),bar(b),bar(c) are three non zero vectors,then bar(a).bar(b)=bar(a).bar(c)rArr

if bar(a),bar(b),bar(c) are any three vectors then prove that [bar(a),bar(b)+bar(c),bar(a)+bar(b)+bar(c)]=0

If bara,barb,barc are non-coplanar vectors then [bar(a)+2bar(b)" "bar(a)+bar(c)" "bar(b)]=

if bar a+2 bar b+3bar c=bar 0 then bar axxbar b+bar b xx bar c+bar cxx bara = lambda (bar b xx bar c) ,where lambda=

Let bar(a),bar(b),bar(c) be three vectors satistying bar(a)xxbar(b)=2bar(a)xxbar(c),|bar(a)|=|bar(c)|=1bar(b)=4 and |bar(b)xxbar(c)|=sqrt(15). If bar(b)-2bar(c)=lambdabar(a) then lambda is

bar(a) , bar(b) and bar(c) are three vectors such that bar(a) + bar(b) + bar(c) = bar(0) and |bar(a)| =2, |bar(b)| =3, |bar(c)| =5 ,then bar(a) . bar(b) + bar(b) . bar(c) + bar(c) . bar(a) equals

If bar(a),bar(b),bar(c) are non-coplanar vectors such that then bar(b)xxbar(c)=bar(a),bar(c)xxbar(a)=bar(b) and bar(a)xxbar(b)=bar(c), then |bar(a)+bar(b)+bar(c)|=

Let a,b, c be three vectors such that |bar(a)|=1,|bar(b)|=2 and if bar(a)times(bar(a)timesbar(c))+bar(b)=bar(0), then angle between bar(a) and bar(c) can be.

Let (a,b,c) be three vectors such that |bar(a)|=1 and |bar(b)|=1 , |bar(c)|=2 , if bar(a)times(bar(a)timesbar(c))+bar(b)=bar(0) , then Angle between bar(a) and bar(c) can be