Home
Class 12
MATHS
If the curves (x^(2))/(l^(2))+(y^(2))/(m...

If the curves `(x^(2))/(l^(2))+(y^(2))/(m^(2))=1` and `(x^(2))/(64)+(y^(2))/(25)=1` cut each other orthogonally then `l^(2)-m^(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the curves (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 and (x^(2))/(l^(2))-(y^(2))/(m^(2))=1 cut each other orthogonally then....

If the curves (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 and (x^(2))/(c^(2))+(y^(2))/(d^(2))=1 intersect orthogonally, then

Prove that the curve (x^(2))/(a^(2))+(y^(2))/(b^(2))=1(x^(2))/(a^(12))+(y^(2))/(b^(2))=1 intersect orthogonally if a^(2)-a^(2)=b^(2)-b^(2)

The curve x^(2)-y^(2)=5 and (x^(2))/(18)+(y^(2))/(8)=1 cut each other at any common point at an angle-

Find the condition for the curve (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 and xy =c^(2) to interest orthogonally.

If the curve ax^(2) + 3y^(2) = 1 and 2x^2 + 6y^2 = 1 cut each other orthogonally then the value of 2a :

Find the value of a if the curves (x^(2))/(a^(2))+(y^(2))/(4)=1 and y^(3)=16x cut orthogonally.

Prove that the curves 2y^(2)=x^(3) and y^(2)=32x cut each other orthogonally at the origin

If the curve ax^(2)+by^(2)=1 and a'x^(2)+b'y^(2)=1 intersect orthogonally, then

For what value of k is the circle x^(2)+y^(2)+5x+3y+7=0 and x^(2)+y^(2)-8x+6y+k=0 cut each other orthogonally.