Home
Class 12
MATHS
If the curve ax^(2)+by^(2)=1 and a'x^(2)...

If the curve `ax^(2)+by^(2)=1 and a'x^(2)+b'y^(2)=1` intersect orthogonally, then

Promotional Banner

Similar Questions

Explore conceptually related problems

If two curves ax^(2)+by^(2)=1 and a'x^(2)+b'y^(2)=1 intersect orthogonally,then show that (1)/(a)-(1)/(b)=(1)/(a')-(1)/(b')

The curves ax^(2)+by^(2)=1 and Ax^(2)+B y^(2) =1 intersect orthogonally, then

If the curves 2x^(2)+3y^(2)=6 and ax^(2)+4y^(2)=4 intersect orthogonally, then a =

Show the condition that the curves ax^(2)+by^(2)=1 and a'x^(2)+b'y^(2)=1 should intersect orthogonally is (1)/(a)-(1)/(b)=(1)/(a')-(a)/(b)

Prove that the curve 2x^(2)+3y^(2)=1 and x^(2)-y^(2)=(1)/(12) intersect orthogonally.

Show that it the curves ax^(2) +by^(2)=1 " and " Ax^(2) +By^(2) =1 are orthogonal then ab(A-B)=AB(a-b).

If ax^(2)+by^(2)=1 cute a'x^(2)+b'y^(2)=1 orthogonally, then

If the curve ax^(2) + 3y^(2) = 1 and 2x^2 + 6y^2 = 1 cut each other orthogonally then the value of 2a :

If curves y^2=6x and 9x^2+by^2=16 intersect orthogonally, then b is equal to