Home
Class 12
MATHS
If A,B,C are positive acute angles and s...

If `A,B,C` are positive acute angles and `sin(B+C-A)=cos(C+A-B)=tan(A+B-C)=1` then `A,B,C` are

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,B,C are positive acute angles and tan A=(4)/(7),tan B=(1)/(7),tan C=(1)/(8), prove that A+B+C=45

If A+B+C=pi and A, B, C are acute positive angles and cotA cotB cotC = k, then

If A and B are complementary angles,then sin A=sin B(b)cos A=cos B(c)tan A=tan B(d)sec A=cos ecB

tan(B-C)+tan(C-A)+tan(A-B)=tan(B-C)tan(C-A)tan(A-B)

tan(B-C)+tan(C-A)+tan(A-B)=tan(B-C)tan(C-A)tan(A-B)

If A + B + C = 180^(@) prove that: (i) "sin" (B+C-A) + "sin"(C+ A-B) + sin (A + B-C) = 4 sin A sin B sin C (ii) cos(- A+B+C) + cos (A - B + C) + cos (A + B - C) = 1 + 4 cos A cos B cos C (iii) "tan" (B+C - A) + tan (C+A-B) + tan (A + B-C) = tan (B+C - A) tan (C+ A - B) tan (A+B-C)