Home
Class 11
MATHS
If int(dx)/((1+sin x))=tan((x)/(2)+a)+b,...

If `int(dx)/((1+sin x))=tan((x)/(2)+a)+b`, then the value of `-(2048a)/(pi)` must be

Promotional Banner

Similar Questions

Explore conceptually related problems

int(dx)/(1+sin x)=tan((x)/(2)+a)+b then find the values of a and b

If int_(0)^((pi)/(2))(dx)/(1+sin x+cos x)=In2, then the value of int_(0)^((pi)/(2))(sin x)/(1+sin x+cos x)dx is equal to:

If y=tan^(-1)sqrt((1-sin x)/(1+sin x)), then the value of (dy)/(dx) at x=(pi)/(6) is.

int(1)/(1+sin x)dx=tan((x)/(2)+a)+b, then 1)a=-(pi)/(4),b in R2)a=(pi)/(4),b in R3)a=(5 pi)/(4),b in R4 none of these

If int _(a )^(b) |sin x |dx =8 and int _(0)^(a+b) |cos x| dx=9 then the value of (1)/(sqrt2pi) |int _(a)^(b) x sin x dx | is:

Find the value of int_(-1)^(2)|x sin pi x|dx

If f(x) = |(x,cos x,e^(x^(2))),(sin x,x^(2),sec x),(tan x,1,2)| , then the value of int_(-pi//2)^(pi//2) f(x) dx is equal to

int (1) / (tan x + sin x) dx