Home
Class 11
MATHS
The area of triangle formed by the vert...

The area of triangle formed by the vertices `(a,(1)/(a)),(b,(1)/(b)) and (c,(1)/(c)) `iS
`(a+b+c)/(abc)`
`|((a-b)(b-c)(c-a))/(2abc)|`
`(abc)/(a+b+c)`
`(1)/(2)(a^(2)+b^(2)+c^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

The area of the triangle formed by the points (a,a^(2)),(b,b^(2)),(c,c^(2)) in square units is (1)/(2)|(a+b)(b+c)(c+a)| (1)/(2)|(a+b+c)abc| 1/2|(a-b)(b-c)(c-a)|

The area of the triangle formed by (a,b+c),(b,c+a) and (c,a+b) is a+b+c( b) abc(a+b+c)^(2)(d)0

((1)/(a)-(1)/(b+c))/((1)/(a)+(1)/(b+c))(1+(b^(2)+c^(2)-a^(2))/(2bc)):(a-b-c)/(abc)

If sides of triangle ABC are a,b and c such that 2b=a+c then (b)/(c)>(2)/(3)( b) (b)/(c)>(1)/(3)(b)/(c)<2 (d) (b)/(c)<(3)/(2)

In a triangle ABC prove that a/(a+c)+b/(c+a)+c/(a+b)<2

In any triangle ABC, prove that: (b-c)/(b+c)=(tan((b-C)/(2)))/(tan((B+C)/(2)))

For any triangle ABC, prove that (cos A)/(a)+(cos B)/(b)+(cos C)/(c)=(a^(2)+b^(2)+c^(2))/(2abc)

Prove: a^(3)+b^(3)+c^(3)-3abc=(1)/(2)(a+b+c){(a-b)^(2)+(b-c)^(2)+(c-a)^(2)}

If a,b,c in R^(+), then (bc)/(b+c)+(ac)/(a+c)+(ab)/(a+b) is always (a) (a) =(1)/(3)sqrt(abc)(c) =(1)/(2)sqrt(abc)