Home
Class 12
MATHS
A = [{:(e^(t), e^(-t)"cos"t, e^(-t)"s...

`A = [{:(e^(t), e^(-t)"cos"t, e^(-t)"sin"t),(e^(t),-e^(-t)"cos"t-e^(-t)"sin"t, -e^(-t)"sin"t + e^(-t)"cos"t),(e^(t), 2e^(-t)"sin"t, -2e^(-t)"cos"t):}]"then A is"`

A

Invertible for all `t in R`

B

Invertible only if `t = pi/2`

C

Not Invertible for all `t in R`

D

Invertible only if `t = pi`

Text Solution

Verified by Experts

The correct Answer is:
A

`A=[(e^(t),e^(-t)cost,e^(-t)sint),(e^(t)-e^(-t),cost-e^(-t)sint-e^(-t),siny+e^(-t)cost),(e^(t),2e^(-t)sint,-2e^(-t)cost)]`
`det(A)=|A|=|(e^(t),e^(-t)cost,e^(-t)sint),(e^(t)-e^(-t),cos-e^(-t)sint,-e^(-t)sint+e^(-t)cost),(e^(t),2e^(-t)sint,-2e^(-t)cost)|`
`=e^(-t)|(1, cost,sint),(1,-cost-sint,-sint+cost),(1, 2sint,-2cost)|=e^(-t)|(1,cost, sint),(0,-2cost-sint,-2sint+cost),(0, 2sint-cost,-2cost-sint)|`
`=e^(-t)((2cost+sint)^(2)+(2sint-cost)^(2))gt 00 AA t.`
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 1 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS - SECTION 2|5 Videos
  • JEE MAIN REVISION TEST - 30 | JEE -2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • JEE MAIN REVISION TEST - 1 | JEE - 2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

x = "sin" t, y = "cos" 2t

int e^t sint dt

If x=(e^(t)+e^(-t))/(2),y=(e^(t)-e^(-t))/(2)," then: "(dy)/(dx)=

Find dy/dx x=e^t (sin t + cos t ),y=e^t(sin t -cos t)

Matrix =[[e^t,e^-t(sint-2cost),e^-t(-2sint-cost)],[e^t,-e^-t(2sint+cost),e^-t(sint-2cost)],[e^t,e^tcost,e^-tsint]] is invertible. (a) only if t=(pi)/(2) (b) only t=pi (c) tepsilonR (d) t!inR

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

x=a(t-sin t),y=a(1+cos t) then (dy)/(dx) =

Find (dy)/(dx), when x=(e^t+e^(-t))/2 \ a n d \ y=(e^t-e^(-t))/2

If x=a(cos t+t sin t) and y=a(sin t - t cos t), then (d^2y)/dx^2

Find the value of ln(int_(0)^(1) e^(t^(2)+t)(2t^(2)+t+1)dt)