Home
Class 12
MATHS
Let Z0 is the root of equation x^2+x+1=0...

Let `Z_0` is the root of equation `x^2+x+1=0` and `Z=3+6i(Z_0)^(81)-3i(Z_0)^(93)` Then arg `(Z)` is equal to (a) `(pi)/(4)` (b) `(pi)/(3)` (c) `pi` (d) `(pi)/(6)`

A

`pi/4`

B

`pi/6`

C

`0`

D

`pi/3`

Text Solution

Verified by Experts

The correct Answer is:
A

`Z_(0)" is a root of "x^(2)+x+1=0," "Z_(2)" is either " omega or omega^(2)`
`Z=3+6i(omega)^(81)-3i(omega)^(93)," "=3+6i-3i=3+3i`
`"arg "(z)=(pi)/(4)`
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 1 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS - SECTION 2|5 Videos
  • JEE MAIN REVISION TEST - 30 | JEE -2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • JEE MAIN REVISION TEST - 1 | JEE - 2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

If |z_(1)| = sqrt(2), |z_(2)| = sqrt(3) and |z_(1) + z_(2)| = sqrt((5-2sqrt(3))) then arg ((z_(1))/(z_(2))) (not neccessarily principal) is (a) (3pi)/(4) (b) (2pi)/(3) (c) (5pi)/(4) (d) (5pi)/(2)

If z=(1+2i)/(1-(1-i)^2), then arg(z) equals a. 0 b. pi/2 c. pi d. non of these

If a r g(z)<0, then a r g(-z)-"a r g"(z) equals pi (b) -pi (d) -pi/2 (d) pi/2

Find the value of z, if |z |= 4 and arg (z) = (5pi)/(6) .

If z_1,z_2,z_3 are any three roots of the equation z^6=(z+1)^6, then arg((z_1-z_3)/(z_2-z_3)) can be equal to

let z_1,z_2,z_3 and z_4 be the roots of the equation z^4 + z^3 +2=0 , then the value of prod_(r=1)^(4) (2z_r+1) is equal to :

If z=(-2)/(1+isqrt(3)) , then the value of "arg"(z) is a. pi b. pi/4 c. pi/3 d. (2pi)/3

Find the point of intersection of the curves a r g(z-3i)=(3pi)/4a n d arg(2z+1-2i)=pi//4.

Find the point of intersection of the curves a r g(z-3i)=(3pi)/4a n d arg(2z+1-2i)=pi//4.

If z_(i) (where i=1, 2,………………..6 ) be the roots of the equation z^(6)+z^(4)-2=0 , then Sigma_(i=1)^(6)|z_(i)|^(4) is equal to