Home
Class 12
MATHS
If the line x=alpha divides the area of ...

If the line `x=alpha` divides the area of region `R={(x,y) in R^(2): x^(3)leylex, 0le xle 1}` into two equal parts, then

Text Solution

Verified by Experts

The correct Answer is:
2

`A={(x,y):0le ylex|x|+1 and -1lexle1}`
`A{(x,y): 0leylex^(2)+1 and 0lexle1}`
`uu{(x, y):0leyle-x^(2)+1-lexle0}`

Area `=int_(-1)^(0)(1-x^(2))dx+int_(0)^(1)(x^(2)+1)dx="2 sq. units"`
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 1 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS - SECTION 2|5 Videos
  • JEE MAIN REVISION TEST - 30 | JEE -2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • JEE MAIN REVISION TEST - 1 | JEE - 2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

If the line x= alpha divides the area of region R={(x,y)in R^(2): x^(3) le y le x ,0 le x le 1 } into two equal parts, then

If the line x = alpha divides the area of region R = {(x,y) in R^(2) : x^(3) le y le x, 0 le x le 1} into two equal parts, then

Find the area of the region {(x,y): x^(2)+y^(2) le 1 le x + y}

Find the area of the region {(x,y)//x^(2)-x-1 le y le -1}

The area of the region R={(x,y)//x^(2)le y le x} is

Area of the region {(x,y)inR^(2): y ge sqrt(|x+3|), 5ylex+9le15} is equal to

The area of the region A={(x,y), 0 le y le x|x|+1 and -1 le x le 1} in sq. units, is

The area of the region {(x,y): xy le 8,1 le y le x^(2)} is :

The area (in sq units) of the region A={(x,y): x^(2) le y le x +2} is

The area (in sq units) of the region A={(x,y): x^(2) le y le x +2} is