Home
Class 12
MATHS
Let veca = 2hati+lambda1 hatj+3hatk, vec...

Let `veca = 2hati+lambda_1 hatj+3hatk`, `vec(b)=4hati+(3-lambda_2) hatj+6hatk` and `vec(c)=3hati+6hatj+(lambda_3-1)hatk` be three vectors such that `vec(b)=2 vec(a)` and `vec(a)` is perpendicular to `vec(c)` then a possible value of `((lambda)_1,(lambda)_2,(lambda)_3)` is:

(a) `(1,3,1)`
(b) `((-1/2),4,0)`
(c) `(1,5,1)`
(d) `((1/2), 4, -2)`

A

(1, 5, 1)

B

(1, 3, 1)

C

`(1/2,4,-2)`

D

`(-1/2,4,0)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we have three vectors: \[ \vec{a} = 2\hat{i} + \lambda_1 \hat{j} + 3\hat{k} \] \[ \vec{b} = 4\hat{i} + (3 - \lambda_2) \hat{j} + 6\hat{k} \] \[ \vec{c} = 3\hat{i} + 6\hat{j} + (\lambda_3 - 1) \hat{k} \] We know that \(\vec{b} = 2\vec{a}\) and \(\vec{a}\) is perpendicular to \(\vec{c}\). ### Step 1: Use the condition \(\vec{b} = 2\vec{a}\) From the equation \(\vec{b} = 2\vec{a}\), we can substitute the expressions for \(\vec{a}\) and \(\vec{b}\): \[ 4\hat{i} + (3 - \lambda_2) \hat{j} + 6\hat{k} = 2(2\hat{i} + \lambda_1 \hat{j} + 3\hat{k}) \] Expanding the right side gives: \[ 4\hat{i} + (2\lambda_1) \hat{j} + 6\hat{k} \] Now, equate the components: 1. For the \(\hat{i}\) component: \[ 4 = 4 \quad \text{(This is always true)} \] 2. For the \(\hat{j}\) component: \[ 3 - \lambda_2 = 2\lambda_1 \quad \text{(Equation 1)} \] 3. For the \(\hat{k}\) component: \[ 6 = 6 \quad \text{(This is also always true)} \] ### Step 2: Use the condition that \(\vec{a}\) is perpendicular to \(\vec{c}\) The dot product of \(\vec{a}\) and \(\vec{c}\) must equal zero: \[ \vec{a} \cdot \vec{c} = 0 \] Calculating the dot product: \[ (2\hat{i} + \lambda_1 \hat{j} + 3\hat{k}) \cdot (3\hat{i} + 6\hat{j} + (\lambda_3 - 1)\hat{k}) = 0 \] Expanding this gives: \[ 2 \cdot 3 + \lambda_1 \cdot 6 + 3(\lambda_3 - 1) = 0 \] This simplifies to: \[ 6 + 6\lambda_1 + 3\lambda_3 - 3 = 0 \] Rearranging gives: \[ 6\lambda_1 + 3\lambda_3 + 3 = 0 \] Dividing through by 3: \[ 2\lambda_1 + \lambda_3 + 1 = 0 \quad \text{(Equation 2)} \] ### Step 3: Solve the equations Now we have two equations: 1. \(3 - \lambda_2 = 2\lambda_1\) (Equation 1) 2. \(2\lambda_1 + \lambda_3 + 1 = 0\) (Equation 2) From Equation 1, we can express \(\lambda_2\): \[ \lambda_2 = 3 - 2\lambda_1 \] From Equation 2, we can express \(\lambda_3\): \[ \lambda_3 = -2\lambda_1 - 1 \] ### Step 4: Check the options Now we will check the provided options to find a consistent set of values for \((\lambda_1, \lambda_2, \lambda_3)\). 1. **Option (a)**: \((1, 3, 1)\) - \(\lambda_1 = 1\) - \(\lambda_2 = 3 - 2(1) = 1\) (not equal to 3) - **Not valid.** 2. **Option (b)**: \((-1/2, 4, 0)\) - \(\lambda_1 = -1/2\) - \(\lambda_2 = 3 - 2(-1/2) = 3 + 1 = 4\) (valid) - \(\lambda_3 = -2(-1/2) - 1 = 1 - 1 = 0\) (valid) - **Valid option.** 3. **Option (c)**: \((1, 5, 1)\) - \(\lambda_1 = 1\) - \(\lambda_2 = 3 - 2(1) = 1\) (not equal to 5) - **Not valid.** 4. **Option (d)**: \((1/2, 4, -2)\) - \(\lambda_1 = 1/2\) - \(\lambda_2 = 3 - 2(1/2) = 3 - 1 = 2\) (not equal to 4) - **Not valid.** ### Conclusion The only valid option is: \[ \boxed{(-\frac{1}{2}, 4, 0)} \]

To solve the given problem, we have three vectors: \[ \vec{a} = 2\hat{i} + \lambda_1 \hat{j} + 3\hat{k} \] \[ \vec{b} = 4\hat{i} + (3 - \lambda_2) \hat{j} + 6\hat{k} \] ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 29 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • JEE MAIN REVISION TEST - 7|JEE - 2020

    VMC MODULES ENGLISH|Exercise Mathematics (Section - 2) Numercial type questions|5 Videos

Similar Questions

Explore conceptually related problems

The vectors veca=hati-2hatj+3hatk, vecb=-2hati+3hatj-4hatk and vec c=hati-3hatj+lambdahatk are coplanar if the value of lambda is

Let veca=hati+2hatj+4hatk, vecb=hati+lambdahatj+4hatk and vecc=2hati+4hatj+(lambda^2-1)hatk be coplanar vectors . Then the non-zero vector veca xx vecc is -2lhati+5 hatj . The value of l is ____.

Let vec a=hati -2 hatj + 3 hatk, vec b = 3 hati + 3 hatj -hat k and vec c=d hati + hatj + (2d-1) hat k ." If " vec c is parallel to the plane of the vectors veca and vec b, " then " 11 d =

Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vecc = -2 hati + 3hatj + 6hatk . Let veca_(1) be the projection of veca on vecb and veca_(2) be the projection of veca_(1) on vecc . Then veca_(1).vecb is equal to

Let veca = hati - 2 hatj + 2hatk and vec b = 2 hati - hatj + hatk be two vectors. If vec c is a vector such that vecb xx vec c = vec b xx vec a and vec c vec a = 1 , then vec c vec b is equal to :

If vec a =hati +3hatj , vecb = 2hati -hatj - hatk and vec c =mhati +7 hatj +3hatk are coplanar then find the value of m.

Let veca=2hati+3hatj+4hatk, vecb=hati-2hatj+hatk and vecc=hati+hatj-hatk. If vecr xx veca =vecb and vecr.vec c=3, then the value of |vecr| is equal to

Let veca=a_1hati+a_2hatj+a_3hatk, vecb=b_1hati+b_2hatj+b_3hatk and vecc=c_1hati+c_2hatj+c_3hatk then show that vecaxx(vecb+vecc)=vecaxxb+vecaxxvecc

If veca=2hati+lambda hatj+3hatk, vecb=3hati+3hatj+5hatk, vec c=lambda hati+2hatj+2hatk are linearly dependent vectors, then the number of possible values of lambda is :

If vec(OA)=2hati-hatj+hatk, vec(OB)=hati-3hatj-5hatk and vec(OC)=3hati-3hatj-3hatk then show that CB is perpendicular to AC.

VMC MODULES ENGLISH-JEE MAIN REVISION TEST - 4 JEE - 2020-MATHEMATICS
  1. If a circle C passing through the point (4, 0) touches the circle x^(2...

    Text Solution

    |

  2. Find the plane passing through (4,-1,2) and parallel to the lines (x+2...

    Text Solution

    |

  3. Let veca = 2hati+lambda1 hatj+3hatk, vec(b)=4hati+(3-lambda2) hatj+6ha...

    Text Solution

    |

  4. In a class of 140 students numbered 1 to 140, all even numbered studen...

    Text Solution

    |

  5. If the area enclosed between the curves y=kx^2 and x=ky^2, where kgt0,...

    Text Solution

    |

  6. An unbiased coin is tossed. If the outcome is a head then a pair of un...

    Text Solution

    |

  7. Consider a triangular plot ABC with sides AB = 7 m, BC = 5 m and CA =...

    Text Solution

    |

  8. The mean of five observations is 5 and their variance is 9.20. If thre...

    Text Solution

    |

  9. Let f : RtoR be a function such that f(x)=x^3+x^2f'(1)+xf''(2)+f'''(3)...

    Text Solution

    |

  10. The sum of all two digit positive numbers which when divided by 7 yiel...

    Text Solution

    |

  11. If the point 3x+4y-24=0 intersects the X-axis at the point A and the Y...

    Text Solution

    |

  12. Let A be a point on the line vec(r)=(1-3mu)hati+(mu-1)hatj+(2+5mu)hatk...

    Text Solution

    |

  13. Let f(x){{:(max.{absx,x^2}","" "absxle2),(" "8-2absx","" ...

    Text Solution

    |

  14. The equation of tangent to hyperbola 4x^2-5y^2=20 which is parallel to...

    Text Solution

    |

  15. Consider the statement: "P(n): n^(2)-n+41 is prime". Then which one of...

    Text Solution

    |

  16. If the system fo equations x+y+z = 5 x + 2y + 3z = 9 x + 3y + a...

    Text Solution

    |

  17. The sum of all values of theta in (0,(pi)/(2)) satisfying sin^(2)2thet...

    Text Solution

    |

  18. If (dy)/(dx)+3/(cos^(2)x)y=1/(cos^(2)x),xin((-pi)/3,(pi)/3), and y((pi...

    Text Solution

    |

  19. If underset(i=1)overset(20)Sigma((.^(20)C(i-1))/(.^(20)C(i)+.^(20)C(i-...

    Text Solution

    |

  20. A point P moves on the line 2x-3y+4=0. If Q(1,4) and R (3,-2) are fixe...

    Text Solution

    |