Home
Class 12
MATHS
If (dy)/(dx)+3/(cos^(2)x)y=1/(cos^(2)x),...

If `(dy)/(dx)+3/(cos^(2)x)y=1/(cos^(2)x),xin((-pi)/3,(pi)/3),` and `y((pi)/4)=4/3`, then `y(-(pi)/4)` equals `1/3+e^(k)`. The value of k is __________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given differential equation and find the value of \( k \), we will follow these steps: ### Step 1: Write the Differential Equation The given differential equation is: \[ \frac{dy}{dx} + \frac{3}{\cos^2 x} y = \frac{1}{\cos^2 x} \] ### Step 2: Identify \( p(x) \) and \( q(x) \) From the standard form of a linear first-order differential equation \( \frac{dy}{dx} + p(x) y = q(x) \), we identify: - \( p(x) = \frac{3}{\cos^2 x} \) - \( q(x) = \frac{1}{\cos^2 x} \) ### Step 3: Find the Integrating Factor The integrating factor \( \mu(x) \) is given by: \[ \mu(x) = e^{\int p(x) \, dx} = e^{\int \frac{3}{\cos^2 x} \, dx} \] The integral of \( \frac{1}{\cos^2 x} \) is \( \tan x \), so: \[ \int \frac{3}{\cos^2 x} \, dx = 3 \tan x \] Thus, the integrating factor is: \[ \mu(x) = e^{3 \tan x} \] ### Step 4: Multiply the Differential Equation by the Integrating Factor Multiplying the entire differential equation by \( e^{3 \tan x} \): \[ e^{3 \tan x} \frac{dy}{dx} + 3 e^{3 \tan x} \frac{y}{\cos^2 x} = e^{3 \tan x} \frac{1}{\cos^2 x} \] ### Step 5: Rewrite the Left Side The left side can be rewritten as the derivative of a product: \[ \frac{d}{dx} \left( e^{3 \tan x} y \right) = e^{3 \tan x} \sec^2 x \] ### Step 6: Integrate Both Sides Integrating both sides: \[ \int \frac{d}{dx} \left( e^{3 \tan x} y \right) \, dx = \int e^{3 \tan x} \sec^2 x \, dx \] The right side can be solved using substitution \( u = \tan x \), \( du = \sec^2 x \, dx \): \[ \int e^{3u} \, du = \frac{1}{3} e^{3u} + C = \frac{1}{3} e^{3 \tan x} + C \] ### Step 7: Solve for \( y \) Thus, we have: \[ e^{3 \tan x} y = \frac{1}{3} e^{3 \tan x} + C \] Dividing by \( e^{3 \tan x} \): \[ y = \frac{1}{3} + C e^{-3 \tan x} \] ### Step 8: Use the Initial Condition We are given \( y\left(\frac{\pi}{4}\right) = \frac{4}{3} \): \[ \frac{4}{3} = \frac{1}{3} + C e^{-3 \cdot 1} \] This simplifies to: \[ \frac{4}{3} - \frac{1}{3} = C e^{-3} \implies 1 = C e^{-3} \implies C = e^{3} \] ### Step 9: Write the Final Solution Substituting \( C \) back into the equation: \[ y = \frac{1}{3} + e^{3} e^{-3 \tan x} \] ### Step 10: Find \( y\left(-\frac{\pi}{4}\right) \) Now, we need to find \( y\left(-\frac{\pi}{4}\right) \): \[ y\left(-\frac{\pi}{4}\right) = \frac{1}{3} + e^{3} e^{-3 \cdot (-1)} = \frac{1}{3} + e^{3} e^{3} = \frac{1}{3} + e^{6} \] ### Step 11: Compare with the Given Format The problem states that \( y\left(-\frac{\pi}{4}\right) = \frac{1}{3} + e^{k} \). Therefore, we can equate: \[ e^{k} = e^{6} \implies k = 6 \] ### Final Answer The value of \( k \) is: \[ \boxed{6} \]

To solve the given differential equation and find the value of \( k \), we will follow these steps: ### Step 1: Write the Differential Equation The given differential equation is: \[ \frac{dy}{dx} + \frac{3}{\cos^2 x} y = \frac{1}{\cos^2 x} \] ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 29 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • JEE MAIN REVISION TEST - 7|JEE - 2020

    VMC MODULES ENGLISH|Exercise Mathematics (Section - 2) Numercial type questions|5 Videos

Similar Questions

Explore conceptually related problems

If dy/dx+3/cos^2xy=1/cos^2x,x in((-pi)/3,pi/3)and y(pi/4)=4/3," then "y(-pi/4) equals

If cos x (dy)/(dx)-y sin x = 6x, (0 lt x lt (pi)/(2)) and y((pi)/(3))=0 , then y((pi)/(6)) is equal to :-

Let y(x) be the solution of the differential equation (dy)/(dx)+(3y)/(cos^2x)=1/(cos^2x) and y(pi/4)=4/3 then vaue of y(-pi/4) is equal to (a) -4/3 (b) 1/3 (c) e^6+1/3 (d) 3

If ((2+cosx)/(3+y))(dy)/(dx)+sinx=0 and y(0)=1 , then y((pi)/(3)) is equal to

If xsin((y)/(x))dy = (y sin((y)/(x))-x)dx and y(1) = (pi)/(2) then the value of cos((y)/(e^(7))) is __________.

Find (dy)/(dx)" for "y=sin^(-1) (cos x), x in (0, pi)cup (pi, 2pi).

cos((pi)/(4)-x)cos((pi)/(4)-y)-sin((pi)/(4)-x)sin((pi)/(4)-y)=sin(x+y)

If y=y(x) and ((2+sinx)/(y+1))dy/dx=-cosx, y(0)=1 , then y(pi/2) equals (A) 1/3 (B) 2/3 (C) -1/3 (D) 1

Suppose cos^(2)y.(dy)/(dx)=sin(x+y)+sin(x-y), |x| le (pi)/(2) and |y|le(pi)/(2). If y((pi)/(3))=-(pi)/(2), then y((pi)/(2)) is

The value of underset(0)overset(pi//2)int (sin^(3)x)/(sin x + cos x)dx is (pi-1)/(k) . The value of k is ________.

VMC MODULES ENGLISH-JEE MAIN REVISION TEST - 4 JEE - 2020-MATHEMATICS
  1. Let veca = 2hati+lambda1 hatj+3hatk, vec(b)=4hati+(3-lambda2) hatj+6ha...

    Text Solution

    |

  2. In a class of 140 students numbered 1 to 140, all even numbered studen...

    Text Solution

    |

  3. If the area enclosed between the curves y=kx^2 and x=ky^2, where kgt0,...

    Text Solution

    |

  4. An unbiased coin is tossed. If the outcome is a head then a pair of un...

    Text Solution

    |

  5. Consider a triangular plot ABC with sides AB = 7 m, BC = 5 m and CA =...

    Text Solution

    |

  6. The mean of five observations is 5 and their variance is 9.20. If thre...

    Text Solution

    |

  7. Let f : RtoR be a function such that f(x)=x^3+x^2f'(1)+xf''(2)+f'''(3)...

    Text Solution

    |

  8. The sum of all two digit positive numbers which when divided by 7 yiel...

    Text Solution

    |

  9. If the point 3x+4y-24=0 intersects the X-axis at the point A and the Y...

    Text Solution

    |

  10. Let A be a point on the line vec(r)=(1-3mu)hati+(mu-1)hatj+(2+5mu)hatk...

    Text Solution

    |

  11. Let f(x){{:(max.{absx,x^2}","" "absxle2),(" "8-2absx","" ...

    Text Solution

    |

  12. The equation of tangent to hyperbola 4x^2-5y^2=20 which is parallel to...

    Text Solution

    |

  13. Consider the statement: "P(n): n^(2)-n+41 is prime". Then which one of...

    Text Solution

    |

  14. If the system fo equations x+y+z = 5 x + 2y + 3z = 9 x + 3y + a...

    Text Solution

    |

  15. The sum of all values of theta in (0,(pi)/(2)) satisfying sin^(2)2thet...

    Text Solution

    |

  16. If (dy)/(dx)+3/(cos^(2)x)y=1/(cos^(2)x),xin((-pi)/3,(pi)/3), and y((pi...

    Text Solution

    |

  17. If underset(i=1)overset(20)Sigma((.^(20)C(i-1))/(.^(20)C(i)+.^(20)C(i-...

    Text Solution

    |

  18. A point P moves on the line 2x-3y+4=0. If Q(1,4) and R (3,-2) are fixe...

    Text Solution

    |

  19. The shortest distance between the point (3/2, 0) and the curve y=sqrtx...

    Text Solution

    |

  20. Let I=undersetaoversetbint(x^4-2x^2)dx. If is minimum, then the ordere...

    Text Solution

    |