Home
Class 12
MATHS
Let f(x)=x/(sqrt(a^2+x^2))-(d-x)/(sqrt(b...

Let `f(x)=x/(sqrt(a^2+x^2))-(d-x)/(sqrt(b^2+(d-x)^2)),x in R,` where a, b and d are non-zero real constants. Then

A

is not a continuous function of x

B

f is neither increasing nor decreasing function

C

f is an increasing function of x

D

f is a decreasing function of x

Text Solution

Verified by Experts

The correct Answer is:
C

`f (x) = (x)/( sqrt(a ^(2) + x ^(2)))- ((d -x ))/( sqrt(b ^(2) + (d-x )^(2)))`
`f'(x) (sqrt(a ^(2) + x ^(2)). 1 -x 1/2. (2x )/(sqrt(a ^(2) + x ^(2 ))))/((a ^(2) + x ^(2)))- ([sqrt(b ^(2) + (d-x)^(2)) (-1)+ (d-x). (1)/(2) [2 (d -x) (1))/(sqrt(b ^(2) + (d-x)^(2)))])/((b ^(2) + (d-x )^(2)))`
Upon simplifying
`f '(x) = (a^(2))/((a ^(2) + x ^(2)))+ (b^(2))/((b ^(2) + (d -x )^(3)) 6(3//3))" "therefore f` is increasing
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST 5 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST 11 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION - 2)|4 Videos
  • JEE MAIN REVISION TEST 8 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2 )|5 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=a+b|x|+c|x|^(2) , where a,b,c are real constants. The, f'(0) exists if

If f(x)=x/sqrt(a^2+x^2)-((d-x))/sqrt(b^2+(d-x)^2) then (A) f(x) is strictly increasing (B) f(x) is strictly deceasing (C) f\'(x) is constant (D) f(x) is neither increasing nor decreasing

Let f(x)=a+b|x|+c|x|^4 , where a ,\ b , and c are real constants. Then, f(x) is differentiable at x=0 , if a=0 (b) b=0 (c) c=0 (d) none of these

Let f(x)="min"{sqrt(4-x^(2)),sqrt(1+x^(2))}AA,x in [-2, 2] then the number of points where f(x) is non - differentiable is

Prove that the function f(x) = a sqrt(x - 1) + b sqrt(2x - 1)-sqrt(2x^(2) - 3x + 1) , where a + 2b = 2 and a, b in R always has a root in (1, 5) AA b in R

Let f(x)=a+b|x|+c|x|^4 , where a , ba n dc are real constants. Then, f(x) is differentiable at x=0, if a=0 (b) b=0 (c) c=0 (d) none of these

d/(dx)[cos^(-1)(xsqrt(x)-sqrt((1-x)(1-x^2)))]= 1/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) (-1)/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2))+1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2)) 0 b. 1//4 c. -1//4 d. none of these

Let f(x)=(x^2-x)/(x^2+2x) then d(f^(-1)x)/(dx) is equal to

The value of f(0), so that the function f(x)=(sqrt(a^2-a x+x^2)-sqrt(a^2+a x+x^2))/(sqrt(a+x)-sqrt(a-x)) becomes continuous for all x , given by a^(3/2) (b) a^(1/2) (c) -a^(1/2) (d) -a^(3/2)

The value of f(0), so that the function f(x)=(sqrt(a^2-a x+x^2)-sqrt(a^2+a x+x^2))/(sqrt(a+x)-sqrt(a-x)) becomes continuous for all x , given by a^(3/2) (b) a^(1/2) (c) -a^(1/2) (d) -a^(3/2)