Home
Class 12
MATHS
Let alpha and beta be the roots of the q...

Let `alpha` and `beta` be the roots of the quadratic equation `x^(2)` sin `theta - x (sin theta cos theta + 1) + cos theta = 0 (0 lt theta lt 45^(@))`, and `alpha lt beta`.
Then `underset(n=0)overset(oo)(Sigma) (alpha^(n) + ((-1)^(n))/(beta^(n)))` is equal to

A

`(1)/(1-cos theta) + ( 1)/(1- sin theta)`

B

`(1)/( 1 + cos theta) - (1)/( 1 - sin theta)`

C

`(1)/(1- cos theta)+ (1)/(1+ sin theta)`

D

`(1)/(1- cos theta) - ( 1)/( 1 + sin theta)`

Text Solution

Verified by Experts

The correct Answer is:
C

`because alpha, beta` be the roots of the equation: `" " x ^(2) sin theta - x sin theta cos theta - x + cos theta = 0`
`implies x sin theta ( x- cos theta) -1 (x -cos theta)=0 implies " "( x sin theta -1) (x - cos theta) =0implies x = (1)/(sin theta), cos theta`
Given that `0 lt theta lt 45^(@) and alpha lt beta" " therefore " " alpha =cos theta beta = (1)/(sin theta)`
Now, `sum _(n =0) ^(oo) (alpha ^(n) + ((-1)^(n))/(beta ^(n))) = sum _(n =0) ^(oo) alpha ^(n) + sum_(n =0) ^(oo) ((-1)^(n))/(beta ^(n))= (1)/(1 - alpha ) + (beta)/(1 + beta) = (1)/(1 - cos theta) +((1)/(sin theta))/(1 + (1)/(sin theta ))= (1)/(1-cos theta) + (1)/(1 +sin theta)`
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST 5 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST 11 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION - 2)|4 Videos
  • JEE MAIN REVISION TEST 8 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2 )|5 Videos

Similar Questions

Explore conceptually related problems

Let alpha and beta be the roots of the quadratic equation x^(2) sin theta - x (sin theta cos theta + 1) + cos theta = 0 (0 lt theta lt 45^(@)) , and alpha lt beta . Then Sigma_(n=0)^(oo) (alpha^(n) + ((-1)^(n))/(beta^(n))) is equal to

sin 5 theta = cos 2 theta , 0^(@) lt theta lt 180^(@). Find value of theta

Solve: sin 7 theta + sin 4 theta + sin theta = 0, 0 lt theta lt ( pi)/(2)

If alpha and beta are 2 distinct roots of equation a cos theta + b sin theta = C then cos( alpha + beta ) =

If alpha and beta are roots of the equation a cos theta + b sin theta = c , then find the value of tan (alpha + beta).

cos theta + sin theta - sin 2 theta = (1)/(2), 0 lt theta lt (pi)/(2)

If (sin 3theta)/(cos 2theta)lt 0 , then theta lies in

If alpha,beta are the roots of the quadratic equation x^2-2(1-sin2theta)x-2 cos^2(2theta) = 0 , then the minimum value of (alpha^2+beta^2) is equal to

If alpha, beta are the roots of the equation a cos theta + b sin theta = c , then prove that cos(alpha + beta) = (a^2 - b^2)/(a^2+b^2) .

If cos theta - sin theta = (1)/(5) , where 0 lt theta lt (pi)/(4) , then