Home
Class 12
MATHS
|(a-b-c,2a,2a),(2b,b-c-a,2b),(2c,2c,c-a-...

`|(a-b-c,2a,2a),(2b,b-c-a,2b),(2c,2c,c-a-b)|`

A

`2 (a+b+c)`

B

`-2 (a+b+c)`

C

`-(a+b+c)`

D

`abc`

Text Solution

Verified by Experts

The correct Answer is:
B

`Delta|{:(a-b-c, 2a, 2a),(2b, b-c-a, 2b),(2c, 2c, c-a-b):}|`
`R_(1)to R_(1)+ R_(2)+ R_(3)`
`Delta|{:(a+b+c, a+b+c, a+b+c),(2b, b-c-a, 2b), (2c, 2c, c-a-b):}|implies Delta (a+b+c)|{:(1,1,1),(2b, b-c-a, 2b),(2c, 2c, c-a-b):}|`
Now `C_(1) to C_(1) -C_(2)`
`therefore Delta = (a+b+c) |{:(0,1,1),(a+b+c, b-c-a, 2b),(0, 2c, c-a-b):}|implies Delta = (a+b+c) ^(2) |{:(0,1,1),(1, b-c-a, 2b),(0, 2c, c-a-b):}|`
Expanding along 1st column
`Delta = (a+b+c )^(3){-(c-a-b-2c)}`
`Delta = ( a+b+c) ^(3) = (a+b+c) (a+b+c)^(2)`
Either `x =0 or x =-2 (a+b+c)`
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST 5 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST 11 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION - 2)|4 Videos
  • JEE MAIN REVISION TEST 8 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2 )|5 Videos

Similar Questions

Explore conceptually related problems

If |(a-b-c, 2a, 2a),(2b, b-a-c, 2b),(2c, 2c, c-a-b)|=(a+b+c)(x+a+b+c)^2 then the value of x is equal to (A) -2(a+b+c) (B) a+b+c (C) -(a+b+c) (D) 2(a+b+c)

Using properties of determinant, prove that |(2a, a-b-c, 2a), (2b, 2b, b-c-a), (c-a-b,2c,2c)|=(a+b+c)^(3) .

prove that [ [a-b-c , 2a , 2a ] , [2b , b-c-a , 2b ] ,[2c ,2c,c-a-b]] = (a+b+c)^3

prove that [ [a-b-c , 2a , 2a ] , [2b , b-c-a , 2b ] ,[2c ,2c,c-a-b]] = (a+b+c)^3

Using properties of determinants, prove that following |(a+b+2c,a,b),(c,b+c+2a,b),(c,a,c+a+2b)|=2(a+b+c)^3

Prove: |(0,b^2a, c^2a),( a^2b,0,c^2b),( a^2c, b^2c,0)|=2a^3b^3c^3

Prove: |(a^2,a^2-(b-c)^2,b c), (b^2,b^2-(c-a)^2,c a),( c^2,c^2-(a-b)^2,a b)|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)

Prove that |{:(a,b,c),(a^(2),b^(2),c^(2)),(b+c,c+a,a+b):}|=(a-b)(b-c)(c-a)(a+b+c)

Value of |(1,a,a^2),(1,b,b^2),(1,c,c^2)| is (A) (a-b)(b-c)(c-a) (B) (a^2-b^2)(b^2-c^2)(c^2-a^2) (C) (a-b+c)(b-c+a)(c+a-b) (D) none of these

The determinant Delta=|(a^2(a+b),a b,a c),(a b,b^2(a+k),b c),(a c,b c,c^2(1+k))| is divisible by