Home
Class 12
CHEMISTRY
Given : (i) C("graphite") +O2(g)toCO2(...

Given :
(i) `C("graphite") +O_2(g)toCO_2(g)DeltarH^(Theta)="x kj "mol^(-1)`
(ii)`C("graphite") +(1)/(2)O_2(g)toCO(g),DeltarH^(Theta)="y kj "mol^(-1)`
(iii) `CO(g) +(1)/(2)O_2(g) toCO_2(g),DeltarH^(theta)="zkj" mol^(-1)`
Based on the above thermochemical equations, find out which one of the following algebraic relationships is correct ?

A

z = x + y

B

y = 2z - x

C

x = y - z

D

x = y + z

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will analyze the given thermochemical equations step by step and derive the correct algebraic relationship between the enthalpy changes. ### Step-by-Step Solution: 1. **Identify the Reactions**: - Reaction (i): \[ \text{C (graphite)} + \text{O}_2(g) \rightarrow \text{CO}_2(g), \quad \Delta_r H^\Theta = x \text{ kJ/mol} \] - Reaction (ii): \[ \text{C (graphite)} + \frac{1}{2} \text{O}_2(g) \rightarrow \text{CO}(g), \quad \Delta_r H^\Theta = y \text{ kJ/mol} \] - Reaction (iii): \[ \text{CO}(g) + \frac{1}{2} \text{O}_2(g) \rightarrow \text{CO}_2(g), \quad \Delta_r H^\Theta = z \text{ kJ/mol} \] 2. **Combine Reactions**: - We will add Reaction (ii) and Reaction (iii): - From Reaction (ii): \[ \text{C (graphite)} + \frac{1}{2} \text{O}_2(g) \rightarrow \text{CO}(g) \quad \text{(enthalpy = y)} \] - From Reaction (iii): \[ \text{CO}(g) + \frac{1}{2} \text{O}_2(g) \rightarrow \text{CO}_2(g) \quad \text{(enthalpy = z)} \] 3. **Add the Enthalpy Changes**: - When we add these two reactions, the CO produced in Reaction (ii) cancels out with the CO consumed in Reaction (iii): \[ \text{C (graphite)} + \frac{1}{2} \text{O}_2(g) + \text{CO}(g) + \frac{1}{2} \text{O}_2(g) \rightarrow \text{CO}(g) + \text{CO}_2(g) \] - This simplifies to: \[ \text{C (graphite)} + \text{O}_2(g) \rightarrow \text{CO}_2(g) \] 4. **Calculate the Total Enthalpy**: - The total enthalpy change for this combined reaction is: \[ \Delta_r H^\Theta = y + z \] 5. **Relate to Reaction (i)**: - From Reaction (i), we know: \[ \Delta_r H^\Theta = x \] - Therefore, we can equate: \[ x = y + z \] ### Conclusion: The correct algebraic relationship based on the given thermochemical equations is: \[ \boxed{x = y + z} \]

To solve the problem, we will analyze the given thermochemical equations step by step and derive the correct algebraic relationship between the enthalpy changes. ### Step-by-Step Solution: 1. **Identify the Reactions**: - Reaction (i): \[ \text{C (graphite)} + \text{O}_2(g) \rightarrow \text{CO}_2(g), \quad \Delta_r H^\Theta = x \text{ kJ/mol} ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 7|JEE - 2020

    VMC MODULES ENGLISH|Exercise Chemistry (Section - 2) Numercial Value type|5 Videos
  • JEE MAIN REVISION TEST - 4 JEE - 2020

    VMC MODULES ENGLISH|Exercise CHEMISTRY|25 Videos
  • JEE MAIN REVISION TEST -14

    VMC MODULES ENGLISH|Exercise CHEMISTRY (SECTON 2)|5 Videos

Similar Questions

Explore conceptually related problems

Given C_(("graphite"))+O_(2)(g)toCO_(2)(g), Delta_(r)H^(0)=-393.5kJ" "mol^(-1) H_(2)(g)=+(1)/(2)O_(2)(g)toH_(2)O(1), Delta_(r)H^(0)=-285.8" kJ "mol^(-1) CO_(2)(g)+2H_(2)O(1)toCH_(4)(g)+2O_(2)(g) , Delta_(r)H^(0)=+890.3kJ" "mol^(-1) Based on the above thermochemical equations, the value of Delta_(r)H^(0) at at 298 K for the reaction C_(("graphite"))+2H_(2)(g)toCH_(4)(g) will be:

At 1000^(@)C , Zn_((s)) +(1)/(2)O_(2(g)) to ZnO_((s)), DeltaG^(@)=-360 KJ "mol"^(-1) C_((s)) + (1)/(2)O_(2(g)) to CO_((g)),DeltaG^(@) =-460 KJ "mol"^(-1) The correct statement is

From the data at 25^(@)C : Fe_(2)O_(3)(s) +3C_(("graphite")) rarr 2Fe(s) + 3CO(g), DeltaH^(Theta) = 492.0 kJ mol^(-1) FeO(s) +C_(("graphite")) rarr Fe(s) CO(g), DeltaH^(Theta) = 155.0 kJ mol^(-1) C_(("graphite")) +O_(2)(g) rarr CO_(2)(g), DeltaH^(Theta) =- 393.0 kJ mol^(-1) CO(g)+(1)/(2)O_(2)(g) rarr CO_(2)(g), DeltaH^(Theta) =- 282.0 kJ mol^(-1) Calculate the standard heat of formation of FeO(s) and Fe_(2)O_(3)(s) .

Comment on the thermodynamic stability of NO(g) , given 1/2N_(2)(g)+1/2O_(2)(g)rarr NO(g), Delta_(r)H^(Θ)=90 kJ mol^(-1) NO(g)+1/2O_(2)(g) rarr NO_(2)(g), Delta_(r)H^(Θ)=-74 kJ mol^(-1)

Methanol can be prepared synthetically by heating carbon monoxide and hydrogen gases under pressure in the presence of a catalyst. The reaction is CO(g) +2H_(2)(g) rarr CH_(3)OH(l) Determine the enthalpy of this reaction by an appropriate combinantion of the following data: a. C_(("graphite")) +(1)/(2)O_(2)(g) rarr CO(g), DeltaH^(Theta)=- 110.5kJ mol^(-1) b. C_(("graphite")) +O_(2)(g) rarr CO_(2)(g), DeltaH^(Theta) =- 393.5 kJ mol^(-1) c. H_(2)(g) +(1)/(2)O_(2)(g) rarr H_(2)O(l), DeltaH^(Theta) =- 285.9kJ mol^(-1) d. CH_(3)OH(l) +(3)/(2)O_(2)(g)rarr CO_(2)(g) +2H_(2)O(l),DeltaH^(Theta) =- 726.6 kJ mol^(-1)

At 25^(@)C , the following heat of formations are given: {:("Compound",SO_(2)(g),H_(2)O(l),,),(Delta_(f)H^(Theta)kJmol^(-1),-296.0,-285.0,,):} For the reactions at 25^(@)C , 2H_(2)S(g) +Fe(s) rarr FeS_(2)(s) +2H_(2)(g), DeltaH^(Theta) =- 137 kJ mool^(-1) H_(2)S(g) +(3)/(2)O_(2)(g) rarr H_(2)O(l) +So_(2)(g),DeltaH^(Theta) =- 562kJ mol^(-1) Calculate the heat of formation of H_(2)S(g) and FeS_(2)(g) at 25^(@)C .

The enthalpy changes for two reactions are given by the equations: 2Cr(s) +(3)/(2)O_(2)(g) rarr Cr_(2)O_(3)(s), DeltaH^(Theta) =- 1130 kJ C(s) +(1)/(2)O_(2)(g)rarr CO(g), DeltaH^(Theta) =- 110 kJ What is the enthalpy change in kJ for the following reactions? 3C(s) +Cr_(2)O_(3)(s) rarr 2Cr(s) +3CO(g)

The standard Gibbs energy change value (Delta_(r)G^(Theta)) at 1773K are given for the following reactions: 4Fe +3O_(2) rarr 2Fe_(2)O_(3), Delta_(r)G^(Theta) = - 1487 kJ mol^(-1) 4AI +3O_(2) rarr 2AI_(2)O_(3),Delta_(r)G^(Theta) =- 22500 kJ mol^(-1) 2CO +O_(2) rarr 2CO_(2),Delta_(r)G^(Theta) =- 515 kJ mol^(-1) Find out the possibility of reducing Fe_(2)O_(3) and AI_(2)O_(3) with CO at this temperature.

Given that: 2C(s)+O_(2)(g)to2CO_(2)(g)" "(DeltaH=-787kJ) . . . (i) H_(2)(g)+1//2O_(2)(g)toH_(2)O(l)" "(DeltaH=-286kJ) . . . (ii) C_(2)H_(2)+2(1)/(2)O_(2)(g)to2CO_(2)(g)+H_(2)O(l)" "(DeltaH=-1310kJ) . . .(iii) The heat of formation of acetylene is:

For the reaction, 4C(graphite) +5H_(2)(g) rarr nC_(4)H_(10)(g) , DeltaH^(Theta) =- 124.73 kJ mol^(-1), DeltaS^(Theta) =- 365.8 J K^(-1) mol^(-1) 4C(graphite) +5H_(2)(g) rarr iso-C_(4)H_(10)(g) DeltaH^(Theta) =- 131.6 kJ mol^(-1), DeltaS^(Theta) =- 381.079 J K^(-1) mol^(-1) Indicate whther normal butane can be spontaneously converted to iso-butane or not.