Home
Class 12
MATHS
The integral underset1overseteint{(x/e)^...

The integral `underset1overseteint{(x/e)^(2x)-(e/x)^x}log_exdx` is equal to

A

`(3)/(2) - (1)/(e) - (1)/(2e^(2))`

B

`(3)/(2) e (1)/(2e^(2))`

C

`-(1)/(2) + (1)/(e) - (1)/(2e^(2))`

D

`(1)/(2) - e - (1)/(e^(2))`

Text Solution

Verified by Experts

The correct Answer is:
B

Put `((x)/(e))^(x) = t " "x rarr 1, t rarr e^(-1)`
`x rarr e, t rarr 1, x^(x).e^(x) = t`
`[x^(x)[ln x + 1] e^(-x) - e^(-x)x^(x)] dx = dt`
`x^(x) = lnx.e^(-x) dx = dt`
`[ln xdx][x^(x).e^(-x)] = dt , ln x.dx = (dx)/(t)`
`int_(e^(-1))^(1)[t^(2) -(1)/(t)](dt)/(t)rArr int_(e^(-1))^(1)[t - (1)/(t^(2))]dt = [(t^(2))/(2)+(1)/(t)]_(-e^(-1))^(1) = (1)/(2)+1 - (e^(-2))/(2) - e = (3)/(2) - e - (1)/(2e^(2))`
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 7|JEE - 2020

    VMC MODULES ENGLISH|Exercise Mathematics (Section - 2) Numercial type questions|5 Videos
  • JEE MAIN REVISION TEST - 4 JEE - 2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • JEE MAIN REVISION TEST -14

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

The integral int_(1)^(e){(x/e)^(2x)-(e/x)^x}log_exdx is equal to

intx^(x)(1+log_(e)x) dx is equal to

int_(1)^(3)|(2-x)log_(e )x|dx is equal to:

intsin2x*log_(e)cosxdx is equal to

The value of the integral underset(e^(-1))overset(e^(2))int |(log_(e)x)/(x)|dx is

The integral int(1+x-1/x)e^(x+1/x)dx is equal to

The value of int_(log1//2)^(log2)sin{(e^(x)-1)/(e^(x)+1)}dx is equal to

Integrate int(x*e^(x))/((1+x)^(2))dx .

The integral inte^x(f(x)+f\'(x))dx can be solved by using integration by parts such that: I=inte^xf(x)dx+inte^xf\'(x)dx=e^xf(x)-inte^xf\'(x)dx+inte^xf\'(x)dx=e^xf(x)+C , and inte^(ax)(f(x)+(f\'(x))/a)dx=e^(ax)f(x)/a+C ,Now answer the question: int{log_e(log_ex)+1/(log_ex)^2}dx is equal to (A) log_e(log_ex)+C (B) xlog_e(log_ex)-x/log_ex+C (C) x/log_ex-log_ex+C (D) log_e(log_ex)-x/log_ex+C

The value of the definite integral int e^(-x^4) (2+ln(x+sqrt(x^2+1))+5x^3-8x^4)dx is equal to