Home
Class 12
MATHS
If A= [{:(1, "sin"theta,1), (-"sin"theta...

If `A= [{:(1, "sin"theta,1), (-"sin"theta, 1, "sin" theta),(-1, -"sin"theta, 1):}], " then for all "theta in ((3pi)/(4), (5pi)/(4))` det lies in the interval

A

`[(5)/(2), 4)`

B

`((3)/(2), 3]`

C

`(0, (3)/(2)]`

D

`(1, (5)/(2)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the determinant of the matrix \( A \) and find its range when \( \theta \) lies in the interval \( \left(\frac{3\pi}{4}, \frac{5\pi}{4}\right) \). ### Step 1: Write down the matrix \( A \) The matrix \( A \) is given as: \[ A = \begin{bmatrix} 1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1 \end{bmatrix} \] ### Step 2: Calculate the determinant of \( A \) To find the determinant of \( A \), we can use the formula for the determinant of a \( 3 \times 3 \) matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] where the matrix is represented as: \[ \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \] For our matrix: - \( a = 1, b = \sin \theta, c = 1 \) - \( d = -\sin \theta, e = 1, f = \sin \theta \) - \( g = -1, h = -\sin \theta, i = 1 \) Calculating the determinant: \[ \text{det}(A) = 1(1 \cdot 1 - \sin \theta \cdot (-\sin \theta)) - \sin \theta(-\sin \theta \cdot 1 - \sin \theta \cdot (-1)) + 1(-\sin \theta \cdot (-\sin \theta) - 1 \cdot 1) \] This simplifies to: \[ = 1(1 + \sin^2 \theta) + \sin \theta(\sin \theta + \sin \theta) + 1(\sin^2 \theta - 1) \] \[ = 1 + \sin^2 \theta + 2\sin^2 \theta + \sin^2 \theta - 1 \] \[ = 2 + 2\sin^2 \theta \] ### Step 3: Determine the range of \( \sin^2 \theta \) Next, we need to find the range of \( \sin^2 \theta \) when \( \theta \) is in the interval \( \left(\frac{3\pi}{4}, \frac{5\pi}{4}\right) \). - At \( \theta = \frac{3\pi}{4} \), \( \sin \theta = \frac{1}{\sqrt{2}} \) so \( \sin^2 \theta = \frac{1}{2} \). - At \( \theta = \frac{5\pi}{4} \), \( \sin \theta = -\frac{1}{\sqrt{2}} \) so \( \sin^2 \theta = \frac{1}{2} \). As \( \theta \) varies from \( \frac{3\pi}{4} \) to \( \frac{5\pi}{4} \), \( \sin \theta \) decreases from \( \frac{1}{\sqrt{2}} \) to \( -\frac{1}{\sqrt{2}} \), thus \( \sin^2 \theta \) varies from \( 0 \) to \( \frac{1}{2} \). ### Step 4: Find the range of \( 2 + 2\sin^2 \theta \) Now, substituting the range of \( \sin^2 \theta \) into the expression for the determinant: \[ \text{det}(A) = 2 + 2\sin^2 \theta \] When \( \sin^2 \theta \) varies from \( 0 \) to \( \frac{1}{2} \): - Minimum value: \( 2 + 2 \cdot 0 = 2 \) - Maximum value: \( 2 + 2 \cdot \frac{1}{2} = 3 \) ### Conclusion Thus, the range of the determinant \( \text{det}(A) \) when \( \theta \) lies in the interval \( \left(\frac{3\pi}{4}, \frac{5\pi}{4}\right) \) is: \[ \text{det}(A) \in [2, 3] \]

To solve the problem, we need to calculate the determinant of the matrix \( A \) and find its range when \( \theta \) lies in the interval \( \left(\frac{3\pi}{4}, \frac{5\pi}{4}\right) \). ### Step 1: Write down the matrix \( A \) The matrix \( A \) is given as: \[ A = \begin{bmatrix} 1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 7|JEE - 2020

    VMC MODULES ENGLISH|Exercise Mathematics (Section - 2) Numercial type questions|5 Videos
  • JEE MAIN REVISION TEST - 4 JEE - 2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • JEE MAIN REVISION TEST -14

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

Let A = [(1,sin theta,1),(- sin theta,1,sin theta),(-1,-sin theta,1)], " where " 0 le theta lt 2 pi . then, which of the following is correct ?

Let A = [(1,sin theta,1),(- sin theta,1,sin theta),(-1,-sin theta,1)], " where " 0 le theta lt 2 pi . then, which of the following is not correct ?

If theta in [(pi)/(2),3(pi)/(2)] then sin^(-1)(sin theta) equals

If cos theta - sin theta = (1)/(5) , where 0 lt theta lt (pi)/(4) , then

If sin^2 theta=1/4 , then the value of theta is

Prove that : (1+ sin theta)/(1-sin theta) = tan^2 (pi/4 + theta/2)

Solve: sin 7 theta + sin 4 theta + sin theta = 0, 0 lt theta lt ( pi)/(2)

Prove that : (1+ sin theta - cos theta) / (1+ sin theta + cos theta ) = tan (theta/2)

Prove : (cos theta)/(1+sin theta) + (cos theta)/(1-sin theta)= 2 sec theta

For all theta, sin theta + sin(theta + pi)+sin (2pi + theta)=