Home
Class 12
MATHS
If sin^(4) alpha + 4 cos^(4) beta + 2 = ...

If `sin^(4) alpha + 4 cos^(4) beta + 2 = 4sqrt(2) sin alpha cos beta, alpha beta in [0, pi]`, then `cos (alpha + beta) - cos (alpha - beta)` is equal to `-sqrt(k)`. The value of k is _________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we start with the equation: \[ \sin^4 \alpha + 4 \cos^4 \beta + 2 = 4\sqrt{2} \sin \alpha \cos \beta \] ### Step 1: Rearranging the Equation We can rearrange the equation by moving all terms to one side: \[ \sin^4 \alpha + 4 \cos^4 \beta - 4\sqrt{2} \sin \alpha \cos \beta + 2 = 0 \] ### Step 2: Dividing by 4 Next, we divide the entire equation by 4: \[ \frac{\sin^4 \alpha}{4} + \cos^4 \beta - \sqrt{2} \sin \alpha \cos \beta + \frac{1}{2} = 0 \] ### Step 3: Applying AM-GM Inequality Using the AM-GM inequality, we can express the left-hand side in a more manageable form. Let: \[ x = \sin^4 \alpha, \quad y = \cos^4 \beta \] Then we have: \[ \frac{x}{4} + y + \frac{1}{2} \geq 3\sqrt[3]{\frac{xy}{4}} \quad \text{(AM-GM)} \] ### Step 4: Finding Equality Condition For equality in AM-GM, we need: \[ \frac{x}{4} = y = \frac{1}{2} \] This implies: 1. \( \sin^4 \alpha = 2 \) 2. \( \cos^4 \beta = \frac{1}{2} \) ### Step 5: Solving for \(\alpha\) and \(\beta\) From \( \sin^4 \alpha = 2 \), we have: \[ \sin \alpha = 1 \implies \alpha = \frac{\pi}{2} \] From \( \cos^4 \beta = \frac{1}{2} \), we have: \[ \cos \beta = \frac{1}{\sqrt{2}} \implies \beta = \frac{\pi}{4} \] ### Step 6: Finding \( \cos(\alpha + \beta) - \cos(\alpha - \beta) \) Now we need to calculate: \[ \cos(\alpha + \beta) - \cos(\alpha - \beta) \] Substituting the values of \(\alpha\) and \(\beta\): \[ \cos\left(\frac{\pi}{2} + \frac{\pi}{4}\right) - \cos\left(\frac{\pi}{2} - \frac{\pi}{4}\right) \] Calculating each term: 1. \( \cos\left(\frac{3\pi}{4}\right) = -\frac{1}{\sqrt{2}} \) 2. \( \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \) Thus, \[ -\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} = -\frac{2}{\sqrt{2}} = -\sqrt{2} \] ### Step 7: Relating to \(-\sqrt{k}\) We have: \[ \cos(\alpha + \beta) - \cos(\alpha - \beta) = -\sqrt{2} \] This implies: \[ -\sqrt{k} = -\sqrt{2} \implies k = 2 \] ### Final Answer The value of \( k \) is: \[ \boxed{2} \]

To solve the given problem, we start with the equation: \[ \sin^4 \alpha + 4 \cos^4 \beta + 2 = 4\sqrt{2} \sin \alpha \cos \beta \] ### Step 1: Rearranging the Equation We can rearrange the equation by moving all terms to one side: ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 7|JEE - 2020

    VMC MODULES ENGLISH|Exercise Mathematics (Section - 2) Numercial type questions|5 Videos
  • JEE MAIN REVISION TEST - 4 JEE - 2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • JEE MAIN REVISION TEST -14

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos