Home
Class 12
CHEMISTRY
Poly -beta - hydroxybutyrate - co-beta -...

Poly `-beta` - hydroxybutyrate - co`-beta -` hydroxyvalerate (PHBV ) is a copolymer of ________.

A

3-hydroxybutanoic acid and 4-hydroxypentanoic acid

B

2-hydroxybutanoic acid and 3-hydroxypentanoic acid

C

3-hydroxybutanoic acid and 3-hydroxypentanoic acid

D

3-hydroxybutanoic acid and 2-hydroxypentanoic acid

Text Solution

AI Generated Solution

The correct Answer is:
To determine the monomers that make up the copolymer Poly β-hydroxybutyrate-co-β-hydroxyvalerate (PHBV), we can follow these steps: ### Step 1: Identify the Structure of PHBV PHBV is a copolymer formed from two different monomers. To understand this, we need to visualize the repeating units of the polymer. ### Step 2: Determine the Monomers The repeating units of PHBV consist of: 1. **β-Hydroxybutyrate**: This is derived from butanoic acid (4 carbons) with a hydroxyl group (-OH) on the β-carbon. The structure can be represented as: - **Monomer 1**: 3-hydroxybutanoic acid (C4H8O3) 2. **β-Hydroxyvalerate**: This is derived from valeric acid (5 carbons) with a hydroxyl group (-OH) on the β-carbon. The structure can be represented as: - **Monomer 2**: 3-hydroxyvaleric acid (C5H10O3) ### Step 3: Naming the Monomers - For **3-hydroxybutanoic acid**: - The main chain has 4 carbons (butanoic acid). - The hydroxyl group is on the 3rd carbon. - For **3-hydroxyvaleric acid**: - The main chain has 5 carbons (valeric acid). - The hydroxyl group is on the 3rd carbon. ### Step 4: Conclusion Thus, the copolymer PHBV is formed from the following two monomers: - 3-hydroxybutanoic acid - 3-hydroxyvaleric acid ### Final Answer Poly β-hydroxybutyrate-co-β-hydroxyvalerate (PHBV) is a copolymer of **3-hydroxybutanoic acid and 3-hydroxyvaleric acid**. ---

To determine the monomers that make up the copolymer Poly β-hydroxybutyrate-co-β-hydroxyvalerate (PHBV), we can follow these steps: ### Step 1: Identify the Structure of PHBV PHBV is a copolymer formed from two different monomers. To understand this, we need to visualize the repeating units of the polymer. ### Step 2: Determine the Monomers The repeating units of PHBV consist of: 1. **β-Hydroxybutyrate**: This is derived from butanoic acid (4 carbons) with a hydroxyl group (-OH) on the β-carbon. The structure can be represented as: ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST 8 (2020)

    VMC MODULES ENGLISH|Exercise CHEMISTRY (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST 5 (2020)

    VMC MODULES ENGLISH|Exercise CHEMISTRY (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST- 16

    VMC MODULES ENGLISH|Exercise CHEMISTRY (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

Poly Beta-hydroxybutyrate-co-Beta-hydroxy valerate (PHBV) is obtained by the copolymerisation of

If sin^(4) alpha + 4 cos^(4) beta + 2 = 4sqrt(2) sin alpha cos beta, alpha beta in [0, pi] , then cos (alpha + beta) - cos (alpha - beta) is equal to -sqrt(k) . The value of k is _________.

Under rotation of axes through theta , x cosalpha + ysinalpha=P changes to Xcos beta + Y sin beta=P then . (a) cos beta = cos (alpha - theta) (b) cos alpha= cos( beta - theta) (c) sin beta = sin (alpha - theta) (d) sin alpha = sin ( beta - theta)

If alpha+beta= 60^0 , prove that cos^2 alpha + cos^2 beta - cosalpha cos beta = 3/4 .

If cos alpha=(2cos beta-1)/(2-cos beta) then tan (alpha/2) is equal to

If tan (alpha-beta)=(sin 2beta)/(3-cos 2beta) , then

The expression cos^(2)(alpha + beta + gamma) + cos^(2)(beta + gamma) + cos^(2)alpha - 2cos alpha cos(beta + gamma)cos(alpha + beta + gamma) is (a) independent of alpha (b) independent of beta (c) dependent on gamma only (d) dependent on alpha, beta, gamma

If alpha and beta are non-zero real number such that 2(cos beta-cos alpha)+cos alpha cos beta=1. Then which of the following is treu?

Prove that : cos^2 theta + sin^2 theta cos 2 beta = cos^2 beta + sin^2 beta cos 2theta

Consider three points P = (-sin (beta-alpha), -cos beta) , Q = (cos(beta-alpha), sin beta) , and R = ((cos (beta - alpha + theta), sin (beta - theta)) , where 0< alpha, beta, theta < pi/4 Then