Home
Class 12
CHEMISTRY
The standard electrode potential E^(Thet...

The standard electrode potential `E^(Theta)` and its temperature coefficent `((dE^Theta)/(d T))` for a cell are 2V and `-5xx10^(-4)VK^(-1)` at 300 K respectively. The cell reaction is `Zn(s)+Cu^(2+)(aq)to Zn^(2+)(aq) +Cu(s)`.
The standard reaction enthalpy `(Delta_(t)H^(Theta))` at 300 K is `4.12 xx10^(x) J//"mol"`. Numerical value of x is _________________ [Use `R=8JK^(-1)mol^(-1) and F=96,000 C "mol"^(-1)`].

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the standard reaction enthalpy \((\Delta H^\Theta)\) at 300 K for the given cell reaction and express it in the form \(4.12 \times 10^x \, \text{J/mol}\). ### Step-by-Step Solution: 1. **Identify the given values**: - Standard electrode potential \(E^\Theta = 2 \, \text{V}\) - Temperature coefficient \(\frac{dE^\Theta}{dT} = -5 \times 10^{-4} \, \text{V/K}\) - Temperature \(T = 300 \, \text{K}\) - \(R = 8 \, \text{J/(K mol)}\) - \(F = 96000 \, \text{C/mol}\) 2. **Determine the number of electrons transferred (n)**: - From the cell reaction \( \text{Zn}(s) + \text{Cu}^{2+}(aq) \rightarrow \text{Zn}^{2+}(aq) + \text{Cu}(s) \), we see that: - Zinc is oxidized from 0 to +2, losing 2 electrons. - Copper is reduced from +2 to 0, gaining 2 electrons. - Therefore, \(n = 2\). 3. **Use the Gibbs free energy equation**: - The relationship between Gibbs free energy change \((\Delta G^\Theta)\), enthalpy change \((\Delta H^\Theta)\), and entropy change \((\Delta S^\Theta)\) is given by: \[ \Delta G^\Theta = \Delta H^\Theta - T \Delta S^\Theta \] - We can express \(\Delta G^\Theta\) in terms of the cell potential: \[ \Delta G^\Theta = -nFE^\Theta \] 4. **Substitute \(\Delta G^\Theta\) into the equation**: - Rearranging the equation gives: \[ \Delta H^\Theta = \Delta G^\Theta + T \Delta S^\Theta \] - Since \(\Delta S^\Theta\) can be expressed using the temperature coefficient: \[ \Delta S^\Theta = -nF \frac{dE^\Theta}{dT} \] 5. **Calculate \(\Delta H^\Theta\)**: - Substitute the values into the equations: \[ \Delta G^\Theta = -nFE^\Theta = -2 \times 96000 \times 2 \] \[ \Delta G^\Theta = -384000 \, \text{J/mol} \] - Now calculate \(\Delta S^\Theta\): \[ \Delta S^\Theta = -nF \frac{dE^\Theta}{dT} = -2 \times 96000 \times (-5 \times 10^{-4}) \] \[ \Delta S^\Theta = 96 \, \text{J/K mol} \] - Now substitute back to find \(\Delta H^\Theta\): \[ \Delta H^\Theta = -384000 + 300 \times 96 \] \[ \Delta H^\Theta = -384000 + 28800 = -355200 \, \text{J/mol} \] 6. **Express \(\Delta H^\Theta\) in the required form**: - Since the problem states that the standard reaction enthalpy is given as \(4.12 \times 10^x \, \text{J/mol}\), we take the absolute value: \[ |\Delta H^\Theta| = 355200 \, \text{J/mol} = 3.552 \times 10^5 \, \text{J/mol} \] - Therefore, \(x = 5\). ### Final Answer: The numerical value of \(x\) is \(5\).

To solve the problem, we need to find the standard reaction enthalpy \((\Delta H^\Theta)\) at 300 K for the given cell reaction and express it in the form \(4.12 \times 10^x \, \text{J/mol}\). ### Step-by-Step Solution: 1. **Identify the given values**: - Standard electrode potential \(E^\Theta = 2 \, \text{V}\) - Temperature coefficient \(\frac{dE^\Theta}{dT} = -5 \times 10^{-4} \, \text{V/K}\) - Temperature \(T = 300 \, \text{K}\) ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST 8 (2020)

    VMC MODULES ENGLISH|Exercise CHEMISTRY (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST 5 (2020)

    VMC MODULES ENGLISH|Exercise CHEMISTRY (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST- 16

    VMC MODULES ENGLISH|Exercise CHEMISTRY (SECTION 2)|5 Videos