Home
Class 12
MATHS
The Boolean expression ((p wedge q) v...

The Boolean expression
`((p wedge q) vee (p vee ~q)) wedge (~p wedge ~q)` is equivalent

A

`(~p) ^^ (~q)`

B

`p vv (~q)`

C

`p ^^ q`

D

`p ^^ (~q)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the Boolean expression \(((p \land q) \lor (p \lor \neg q)) \land (\neg p \land \neg q)\) and find its equivalent, we will simplify the expression step by step. ### Step 1: Break down the expression The given expression is: \[ ((p \land q) \lor (p \lor \neg q)) \land (\neg p \land \neg q) \] We can simplify the expression inside the first parentheses. ### Step 2: Simplify the first part \((p \land q) \lor (p \lor \neg q)\) We can use the distributive property of Boolean algebra: 1. \(p \lor \neg q\) can be simplified further. 2. The expression \((p \land q) \lor (p \lor \neg q)\) can be evaluated by considering the possible values of \(p\) and \(q\). ### Step 3: Evaluate the truth values We will create a truth table for \(p\) and \(q\): | p | q | \(p \land q\) | \(\neg q\) | \(p \lor \neg q\) | \((p \land q) \lor (p \lor \neg q)\) | |-------|-------|----------------|------------|--------------------|--------------------------------------| | T | T | T | F | T | T | | T | F | F | T | T | T | | F | T | F | F | F | F | | F | F | F | T | T | T | From the table, we see that: \[ (p \land q) \lor (p \lor \neg q) = T \text{ for } (T, T), (T, F), (F, F) \text{ and } F \text{ for } (F, T). \] ### Step 4: Combine with \((\neg p \land \neg q)\) Next, we need to evaluate \(\neg p \land \neg q\): | p | q | \(\neg p\) | \(\neg q\) | \(\neg p \land \neg q\) | |-------|-------|------------|------------|--------------------------| | T | T | F | F | F | | T | F | F | T | F | | F | T | T | F | F | | F | F | T | T | T | ### Step 5: Evaluate the final expression Now we combine the results from the previous steps: \[ ((p \land q) \lor (p \lor \neg q)) \land (\neg p \land \neg q) \] From the truth table, we see that \((p \land q) \lor (p \lor \neg q)\) is true for the combinations (T, T), (T, F), and (F, F), but \(\neg p \land \neg q\) is only true for (F, F). Thus, the final expression evaluates to: - True when both parts are true, which only happens when \(p\) and \(q\) are both false. ### Conclusion The equivalent expression for \(((p \land q) \lor (p \lor \neg q)) \land (\neg p \land \neg q)\) is: \[ \neg p \land \neg q \]

To solve the Boolean expression \(((p \land q) \lor (p \lor \neg q)) \land (\neg p \land \neg q)\) and find its equivalent, we will simplify the expression step by step. ### Step 1: Break down the expression The given expression is: \[ ((p \land q) \lor (p \lor \neg q)) \land (\neg p \land \neg q) \] We can simplify the expression inside the first parentheses. ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST 8 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2 )|5 Videos
  • JEE MAIN REVISION TEST 5 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST- 16

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

(p to q) wedge (q to -p) is equivalent to

If the Boolean expression (p oplusq)wedge (~p Theta q) is equivalent to p wedge q , where oplus, Theta in {vee, wedge} , then the ordered pair ( oplus, Theta ) is

The Boolean expression ~(p rArr (~q)) is equivalent to:

~(pvvq)vv(~p^^q) is equivalent to

~ [ ~ p ^^ ( p harr q)] -= is equivalent to

p to q is logically equivalent to

The statement (~(phArr q))^^p is equivalent to

The proposition ~p vv( p ^^ ~ q) is equivalent to

The Boolean Expression (p^^~ q)vvqvv(~ p^^q) is equivalent to : (1) ~ p^^q (2) p^^q (3) pvvq (4) pvv~ q

The statement p to(q to p) is equivalent to