Home
Class 12
MATHS
The sum of the distinct real values of ...

The sum of the distinct real values of μ for which the vectors, `muhat(i)+hat(j)+hat(k),hat(i)+muhat(j)+hat(k),hat(i)+hat(j)+muhat(k)` are co-planar is :

A

0

B

-1

C

2

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To determine the sum of the distinct real values of \( \mu \) for which the vectors \( \mu \hat{i} + \hat{j} + \hat{k} \), \( \hat{i} + \mu \hat{j} + \hat{k} \), and \( \hat{i} + \hat{j} + \mu \hat{k} \) are coplanar, we can use the condition for coplanarity of three vectors. The vectors \( \vec{a} \), \( \vec{b} \), and \( \vec{c} \) are coplanar if the scalar triple product \( \vec{a} \cdot (\vec{b} \times \vec{c}) = 0 \). ### Step 1: Define the vectors Let: - \( \vec{a} = \mu \hat{i} + \hat{j} + \hat{k} \) - \( \vec{b} = \hat{i} + \mu \hat{j} + \hat{k} \) - \( \vec{c} = \hat{i} + \hat{j} + \mu \hat{k} \) ### Step 2: Compute \( \vec{b} \times \vec{c} \) To find \( \vec{b} \times \vec{c} \), we set up the determinant: \[ \vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & \mu & 1 \\ 1 & 1 & \mu \end{vmatrix} \] Calculating the determinant, we get: \[ \vec{b} \times \vec{c} = \hat{i} \left( \mu \cdot \mu - 1 \cdot 1 \right) - \hat{j} \left( 1 \cdot \mu - 1 \cdot 1 \right) + \hat{k} \left( 1 \cdot 1 - 1 \cdot \mu \right) \] This simplifies to: \[ \vec{b} \times \vec{c} = (\mu^2 - 1) \hat{i} - (\mu - 1) \hat{j} + (1 - \mu) \hat{k} \] ### Step 3: Compute \( \vec{a} \cdot (\vec{b} \times \vec{c}) \) Now we compute the dot product \( \vec{a} \cdot (\vec{b} \times \vec{c}) \): \[ \vec{a} \cdot (\vec{b} \times \vec{c}) = (\mu \hat{i} + \hat{j} + \hat{k}) \cdot \left( (\mu^2 - 1) \hat{i} - (\mu - 1) \hat{j} + (1 - \mu) \hat{k} \right) \] Calculating this, we have: \[ = \mu(\mu^2 - 1) + 1(-(\mu - 1)) + 1(1 - \mu) \] This simplifies to: \[ = \mu^3 - \mu + 1 - \mu + 1 - \mu = \mu^3 - 3\mu + 2 \] ### Step 4: Set the equation to zero For the vectors to be coplanar, we set the equation to zero: \[ \mu^3 - 3\mu + 2 = 0 \] ### Step 5: Factor the cubic equation To find the roots, we can use the Rational Root Theorem or synthetic division. Testing \( \mu = 1 \): \[ 1^3 - 3(1) + 2 = 0 \] So, \( \mu = 1 \) is a root. We can factor the cubic as: \[ (\mu - 1)(\mu^2 + \mu - 2) = 0 \] Now, we can factor \( \mu^2 + \mu - 2 \): \[ \mu^2 + \mu - 2 = (\mu - 1)(\mu + 2) = 0 \] Thus, the roots are \( \mu = 1 \) and \( \mu = -2 \). ### Step 6: Calculate the sum of distinct real values The distinct real values of \( \mu \) are \( 1 \) and \( -2 \). Therefore, the sum is: \[ 1 + (-2) = -1 \] ### Final Answer The sum of the distinct real values of \( \mu \) for which the vectors are coplanar is \( \boxed{-1} \).

To determine the sum of the distinct real values of \( \mu \) for which the vectors \( \mu \hat{i} + \hat{j} + \hat{k} \), \( \hat{i} + \mu \hat{j} + \hat{k} \), and \( \hat{i} + \hat{j} + \mu \hat{k} \) are coplanar, we can use the condition for coplanarity of three vectors. The vectors \( \vec{a} \), \( \vec{b} \), and \( \vec{c} \) are coplanar if the scalar triple product \( \vec{a} \cdot (\vec{b} \times \vec{c}) = 0 \). ### Step 1: Define the vectors Let: - \( \vec{a} = \mu \hat{i} + \hat{j} + \hat{k} \) - \( \vec{b} = \hat{i} + \mu \hat{j} + \hat{k} \) - \( \vec{c} = \hat{i} + \hat{j} + \mu \hat{k} \) ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST 8 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2 )|5 Videos
  • JEE MAIN REVISION TEST 5 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST- 16

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

If the vectors ahat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k), hat(i)+hat(j)+chat(k) , where a, b, c are coplanar, then a+b+c-abc=

The value of lambda for which the vectors 2 hat(i) + lambda hat(j) + hat(k) and hat(i) + 2 hat(j) + 3 hat(k) are perpendicular is

The value of (hat(k) xx hat(j)). hat(i) + hat(j).hat(k) =

The number of distinct real values of lambda , for which the vectors -lambda^2 hat i+ hat j+k , hat i-lambda^2 hat j+ hat ka n d hat i+ hat j-lambda^2 hat k are coplanar is a. zero b. one c. two d. three

Unit vector along the vector hat(i) + hat(j) + hat(k) is

Show that the vectors 2hat(i)-hat(j)+hat(k) and hat(i)-3hat(j)-5hat(k) are at right angles.

Find the angle between the vectors 2 hat(i) - hat(j) - hat(k) and 3 hat(i) + 4 hat(j) - hat(k) .

The value of hat(i).(hat(j) xx hat(k))+ hat(j). (hat(i) xxhat(k)) + hat(k) . (hat(i) xx hat(j))

Find the value of lamda , if the points with position vectors 3hat(i)- 2hat(j)- hat(k), 2hat(i) + 3hat(j)- 4hat(k), -hat(i) + hat(j) + 2hat(k), 4hat(i) + 5hat(j) + lamda hat(k) are coplanar.