Home
Class 12
MATHS
int cos (loge x)dx is equal to...

`int cos (log_e x)dx` is equal to

A

`x[cos (log_e x)+sin(log_e x)]+C`

B

`(x)/(2)[cos(log_e x)+sin(log_e x)]+C`

C

`x[cos(log_e x)-sin(log_e x)]+C`

D

`(x)/(2) [sin (log_e x)-cos (log_e x)]+C`.

Text Solution

Verified by Experts

The correct Answer is:
B

`I=x cos (log_e x)+int sin (log_e)(1)/(x).x.dx+C`.
`I= x cos (log_e x)+[ x sin log_e x -int cos (log_e x)((1)/(x)).x dx]`
`I=x cos (log_e x)+x sin (log_(e) x)-I+C`.
`I=(x)/(2) (cos (log_e x)+sin(log_e x)+C`.
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST 8 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2 )|5 Videos
  • JEE MAIN REVISION TEST 5 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST- 16

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

int ( sin ( log x) + cos ( log x ) dx is equal to

int{sin(log_(e)x)+cos(log_(e)x)}dx is equal to

int (1+log_e x)/x dx

inte^(xloga).e^(x)dx is equal to

The value of int x log x (log x - 1) dx is equal to

intx^(x)(1+log_(e)x) dx is equal to

int sqrt(e^(x)-1)dx is equal to

int cot x log ( sin x ) dx is equal to

The integral inte^x(f(x)+f\'(x))dx can be solved by using integration by parts such that: I=inte^xf(x)dx+inte^xf\'(x)dx=e^xf(x)-inte^xf\'(x)dx+inte^xf\'(x)dx=e^xf(x)+C , and inte^(ax)(f(x)+(f\'(x))/a)dx=e^(ax)f(x)/a+C ,Now answer the question: int{log_e(log_ex)+1/(log_ex)^2}dx is equal to (A) log_e(log_ex)+C (B) xlog_e(log_ex)-x/log_ex+C (C) x/log_ex-log_ex+C (D) log_e(log_ex)-x/log_ex+C

int ((1-sin x )/( 1- cos x )) e^(x) dx is equal to