Home
Class 12
MATHS
Let S(k) = (1+2+3+...+k)/(k). If S(1)^(2...

Let `S_(k) = (1+2+3+...+k)/(k)`. If `S_(1)^(2) + s_(2)^(2) +...+S_(10)^(2) = (5)/(12)A`, then A is equal to

A

156

B

283

C

303

D

301

Text Solution

Verified by Experts

The correct Answer is:
C

Given `S_(k)=(1+2+3+……+k)/(k)=(k(k+1))/(2k)=(k+1)/(2)`
`sum_(k=1)^(10)S_(1)^(2)=sum_(k=1)^(10)((k+1)/(2))^2=(5)/(12)ArArr (2^2+3^2+.....+11^2)/(4)=(5)/(12)A`
`A=303`
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST 8 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2 )|5 Videos
  • JEE MAIN REVISION TEST 5 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST- 16

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

Let s_(1), s_(2), s_(3).... and t_(1), t_(2), t_(3) .... are two arithmetic sequences such that s_(1) = t_(1) != 0, s_(2) = 2t_(2) and sum_(i=1)^(10) s_(i) = sum_(i=1)^(15) t_(i) . Then the value of (s_(2) -s_(1))/(t_(2) - t_(1)) is

Let z_(k) = cos((2kpi)/(10)) -isin ((2kpi)/(10)), k = 1,2,…..,9

In an AP, If S_(n)=3n^(2)+5n and a_(k)=164, then find the value of k.

In an AP, If S_(n)=3n^(2)+5n and a_(k)=164, then find the value of k.

If Delta_(k) = |(k,1,5),(k^(2),2n +1,2n +1),(k^(3),3n^(2),3n +1)|, " then " sum_(k=1)^(n) Delta_(k) is equal to

If S_(1),S_(2),S_(3) be respectively the sum of n, 2n and 3n terms of a GP, then (S_(1)(S_(3)-S_(2)))/((S_(2)-S_(1))^(2)) is equal to

The sum S_(n)=sum_(k=0)^(n)(-1)^(k)*^(3n)C_(k) , where n=1,2,…. is

Let S_(1) = sum_(j=1)^(10) j(j-1).""^(10)C_(j), S_(2) = sum_(j=1)^(10)j.""^(10)C_(j) , and S_(3) = sum_(j=1)^(10) j^(2).""^(10)C_(j) . Statement 1 : S_(3) = 55 xx 2^(9) . Statement 2 : S_(1) = 90 xx 2^(8) and S_(2) = 10 xx 2^(8) .

Let each of the circles, S_(1)=x^(2)+y^(2)+4y-1=0 , S_(2)=x^(2)+y^(2)+6x+y+8=0 , S_(3)=x^(2)+y^(2)-4x-4y-37=0 touches the other two. Let P_(1), P_(2), P_(3) be the points of contact of S_(1) and S_(2), S_(2) and S_(3), S_(3) and S_(1) respectively and C_(1), C_(2), C_(3) be the centres of S_(1), S_(2), S_(3) respectively. Q. The co-ordinates of P_(1) are :

Let n inN and k be an integer ge0 such that S_(k)(n)=1^(k)+2^(k)+3^(k)+ . . . +n^(k) Statement-1: S_(4)(n)=(n)/(30)(n+1)(2n+1)(3n^(2)+3n+1) Statement -2: .^(k+1)C_(1)S_(k)(n)+.^(k+1)C_(2)S_(k-1)(n)+ . . . +.^(k+1)C_(k)S_(1)(n)+.^(k+1)C_(k+1)S_(0)(n)=(n+1)^(k+1)-1