Home
Class 12
MATHS
"If"int(dx)/(x^(3)(1+x^(6))^(2/3))=xf(x)...

`"If"int(dx)/(x^(3)(1+x^(6))^(2/3))=xf(x)(1+x^(6))^(1/3)+C` where, C is a constant of integration, then the function f(x) is equal to

A. ` ( 3 ) /( x ^ 3 ) `
B. ` - ( 1 ) / ( 2x ^ 3 ) `
C. `- ( 1 ) / ( 2 x ^ 2 ) `
D. ` - (1 )/(6x ^ 3 ) `

A

` ( 3 ) /( x ^ 3 ) `

B

` - ( 1 ) / ( 2x ^ 3 ) `

C

`- ( 1 ) / ( 2 x ^ 2 ) `

D

` - (1 )/(6x ^ 3 ) `

Text Solution

AI Generated Solution

To solve the given problem, we start with the equation: \[ \int \frac{dx}{x^3 (1+x^6)^{2/3}} = x f(x) (1+x^6)^{1/3} + C \] ### Step 1: Simplify the Integral We can rewrite the integral on the left-hand side: ...
Promotional Banner

Topper's Solved these Questions

  • JEE Main Revision Test-9 | JEE-2020

    VMC MODULES ENGLISH|Exercise SECTION 2|5 Videos
  • JEE Main Revision Test-6 | JEE-2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

If int (x+1)/(sqrt(2x-1))dx = f(x)sqrt(2x-1)+C , where C is a constant of integration, then f(x) is equal to

"If" int(dx)/((x^(2)-2x+10)^(2))=A("tan"^(-1)((x-1)/(3))+(f(x))/(x^(2)-2x+10))+C ,where, C is a constant of integration, then

"If" int(dx)/((x^(2)-2x+10)^(2))=A("tan"^(-1)((x-1)/(3))+(f(x))/(x^(2)-2x+10))+C ,where, C is a constant of integration, then

Integrate the functions (3x^2)/(x^6+1)

int ((x ^(2) -x+1)/(x ^(2) +1)) e ^(cot^(-1) (x))dx =f (x) .e ^(cot ^(-1)(x)) +C where C is constant of integration. Then f (x) is equal to:

If intsqrt(1-cosx)f(x)dx=2/3(1-cosx)^(3//2)+c where c is constant of integration then f(x) equals:

If the integral I=inte^(x^(2))x^(3)dx=e^(x^(2))f(x)+c , where c is the constant of integration and f(1)=0 , then the value of f(2) is equal to

If intf(x)dx=3[f(x)]^(2)+c (where c is the constant of integration) and f(1)=(1)/(6) , then f(6pi) is equal to

If the integral I=int(x^(5))/(sqrt(1+x^(3)))dx =Ksqrt(x^(3)+1)(x^(3)-2)+C , (where, C is the constant of integration), then the value of 9K is equal to

If I=int((lnx)^(5))/(sqrt(x^(2)+x^(2)(lnx)^(3)))dx=ksqrt((lnx)^(3)+1)((lnx)^(3)-2)+c (where c is the constant of integration), then 9k is equal to