Home
Class 12
MATHS
Let oversetto a=3hati+2hatj+xhatk and ov...

Let `oversetto a=3hati+2hatj+xhatk` and `oversettob=hati-hatj+hatK`
Some real x. Then `|oversettoaxxoversettob|=r` is possible if:

A. ` 3 sqrt ((3 )/(2)) lt r lt 5sqrt ((3)/(2)) `
B. ` 0 lt r le sqrt ((3)/(2)) `
C. ` r ge 5 sqrt (( 3 )/(2)) `
D. `sqrt (( 3 ) /(2) lt r le 3 sqrt ((3 ) /(2))`

A

` 3 sqrt ((3 )/(2)) lt r lt 5sqrt ((3)/(2)) `

B

` 0 lt r le sqrt ((3)/(2)) `

C

` r ge 5 sqrt (( 3 )/(2)) `

D

`sqrt (( 3 ) /(2) lt r le 3 sqrt ((3 ) /(2))`

Text Solution

AI Generated Solution

To solve the problem, we need to find the conditions under which the magnitude of the cross product of two vectors \( \vec{a} \) and \( \vec{b} \) is equal to \( r \). Let's go through the steps systematically. ### Step 1: Define the Vectors Given: \[ \vec{a} = 3\hat{i} + 2\hat{j} + x\hat{k} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • JEE Main Revision Test-9 | JEE-2020

    VMC MODULES ENGLISH|Exercise SECTION 2|5 Videos
  • JEE Main Revision Test-6 | JEE-2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

Let a=3hati + 2hatj + xhatk and b = hati - hatj + hatk , for some real x. Then |a+b| = r is possible if.

Solve for x , sin x = ( -sqrt3)/(2), (0 lt x lt 2pi).

If a=3hati-2hatj+hatk,b=2hati-4hatj-3hatk and c=-hati+2hatj+2hatk , then a+b+c is

Prove that 4 lt= int_1^3 sqrt(3+x^2) dx lt= 4sqrt(3)

Prove that the equation p cos x - q sin x =r admits solution for x only if -sqrt(p^(2)+q^(2)) lt r lt sqrt(p^(2)+q^(2))

cot^(2) theta - (1 + sqrt3) cot theta + sqrt3 = 0,0 lt theta lt (pi)/(2)

Solve sin 3x = - (1)/(sqrt2) , 0 lt x lt 2pi.

Let barA= hati + 2hatj + 3hatk and vec B = 3hati + 4hatj + 5hatk The value of the scalar sqrt(|vec A times vecB|^2+(vecA.vecB)^2) is equal to

Given: vec p = - hati -3 hatj + 2hatk and vec r = hati + 3 hatj + 5hatk . Find vector parallel to electric field at position r. [ Note that vec p . vec r = 0 ]

If Cos A =(sqrt(3))/(2), 0^(@) lt A lt 90^(@) , then A is equal to