Home
Class 12
MATHS
if z = (sqrt 3 ) /(2) + (i)/(2) ( ...

if ` z = (sqrt 3 ) /(2) + (i)/(2) ( i=sqrt ( -1) )`, then ` ( 1 + iz + z^5 + iz^8)^9 ` is equal to:

A

` ( - 1 + 2 i) ^ 9 `

B

` 0 `

C

` -1 `

D

` 1 `

Text Solution

AI Generated Solution

To solve the problem, we start with the given complex number: \[ z = \frac{\sqrt{3}}{2} + \frac{i}{2} \] ### Step 1: Identify the properties of \( z \) ...
Promotional Banner

Topper's Solved these Questions

  • JEE Main Revision Test-9 | JEE-2020

    VMC MODULES ENGLISH|Exercise SECTION 2|5 Videos
  • JEE Main Revision Test-6 | JEE-2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

If z = (sqrt(3+i))/2 (where i = sqrt(-1) ) then (z^101 + i^103)^105 is equal to

If z=(sqrt(3)/2+i/2)^5+(sqrt(3)/2-i/2)^5 , then prove that Im(z)=0

If z= -3 + sqrt2i , then prove that z^(4) + 5z^(3) + 8z^(2) + 7z + 4 is equal to -29

If z=(sqrt(3)-i)/2 , where i=sqrt(-1) , then (i^(101)+z^(101))^(103) equals to

If z = (-4 +2 sqrt3i)/(5 +sqrt3i) , then the value of arg(z) is

If z=i^(i^(i)) where i=sqrt-1 then |z| is equal to

If z=((sqrt(3))/2+i/2)^5+((sqrt(3))/2-i/2)^5 , then prove that I m(z)=0.

If z(2-2sqrt(3i))^2=i(sqrt(3)+i)^4, then a r g(z)=

If z=re^(itheta) then |e^(iz)| is equal to:

If (3+i)(z+bar(z))-(2+i)(z-bar(z))+14i=0 , where i=sqrt(-1) , then z bar(z) is equal to