Home
Class 12
MATHS
Let f : R to R be a differentiable func...

Let `f : R to R ` be a differentiable function satisfying `f'(3) + f'(2) = 0 `, Then `underset(x to 0) lim ((1+f(3+x)-f(3))/(1+f(2-x)-f(2)))^(1/x) ` is equal to

Text Solution

AI Generated Solution

To solve the limit problem, we start with the given limit expression: \[ L = \lim_{x \to 0} \left( \frac{1 + f(3+x) - f(3)}{1 + f(2-x) - f(2)} \right)^{\frac{1}{x}} \] ### Step 1: Simplifying the Limit Expression ...
Promotional Banner

Topper's Solved these Questions

  • JEE Main Revision Test-9 | JEE-2020

    VMC MODULES ENGLISH|Exercise SECTION 2|5 Videos
  • JEE Main Revision Test-6 | JEE-2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

For a differentiable function f(x) , if f'(2)=2 and f'(3)=1 , then the value of lim_(xrarr0)(f(x^(2)+x+2)-f(2))/(f(x^(2)-x+3)-f(3)) is equal to

Let f : R rarr R be a differentiable function at x = 0 satisfying f(0) = 0 and f'(0) = 1, then the value of lim_(x to 0) (1)/(x) . sum_(n=1)^(oo)(-1)^(n).f((x)/(n)) , is

Let f(x) be a differentiable function satisfying f(y)f(x/y)=f(x) AA , x,y in R, y!=0 and f(1)!=0 , f'(1)=3 then

Let f(x) be a twice-differentiable function and f''(0)=2. Then evaluate lim_(xto0) (2f(x)-3f(2x)+f(4x))/(x^(2)).

Let f be a differentiable function satisfying f(xy)=f(x).f(y).AA x gt 0, y gt 0 and f(1+x)=1+x{1+g(x)} , where lim_(x to 0)g(x)=0 then int (f(x))/(f'(x))dx is equal to

Let f: R → R be a one-one onto differentiable function, such that f(2)=1 and f^(prime)(2)=3. Then, find the value of (d/(dx)(f^(-1)(x)))_(x=1)

Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x for all x in (0,oo) and f(1)=1 , then

Let f :R to R be a differentiable function satisfying: f (xy) =(f(x))/(y)+f(y)/(x) AAx, y in R ^(+) also f (1)=0,f '(1) =1 find lim _(x to e) [(1)/(f (x))] (where [.] denotes greatest integer function).

Let f : R rarr R be a differentiable function satisfying f(x) = f(y) f(x - y), AA x, y in R and f'(0) = int_(0)^(4) {2x}dx , where {.} denotes the fractional part function and f'(-3) = alpha e^(beta) . Then, |alpha + beta| is equal to.......

Let f: R rarr R be a differentiable function satisfying f(x+y)=f(x)+f(y)+x^(2)y+xy^(2) for all real numbers x and y. If lim_(xrarr0) (f(x))/(x)=1, then The value of f(9) is