Home
Class 12
MATHS
Let cos(alpha + beta) = 4//5 and let si...

Let `cos(alpha + beta) = 4//5 ` and let `sin ( alpha - beta)= 5//13`, where `0 le alpha, beta lt pi//4`. Then `tan 2 alpha ` is equal to

A

`21/16`

B

`63/52`

C

`33/52`

D

`63/16`

Text Solution

Verified by Experts

The correct Answer is:
D

`tan(alpha+beta)=4/3" " tan (alpha-beta)=5/12`
`implies(alpha=beta)=ten^-1(4/3)" ".....(i)`
`implies(alpha=beta)=ten^-1(5/12)" ".....(ii)`
Adding (i)and (ii) we get,
`implies2alpha=ten^-1(4/3)+tan^-1(5/12)," " tan2alpha=(4/3+5/12)/(1-20/36)=63/16`
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 10| JEE -2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|6 Videos
  • JEE MAIN REVISION TEST - 1 | JEE - 2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 12

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Let cos (alpha+beta) = 4/5 and sin(alpha-beta)=5/13 where 0<= alpha,beta<= pi/4 then find tan (2alpha)

Let cos(alpha+beta)""=4/5 and let sin (alpha-beta)""=5/(13) where 0lt=alpha,betalt=pi/4 , then t a n""2alpha= (1) (56)/(33) (2) (19)/(12) (3) (20)/7 (4) (25)/(16)

If sin (alpha + beta) = 4/5 , cos (alpha - beta) = (12)/(13) 0 lt alpha lt (pi)/(4), 0 lt beta lt (pi)/(4), find tan 2 alpha .

If cos (alpha + beta) = (4)/(5), sin (alpha - beta) = (5)/(13) and alpha and beta lie between 0 and (pi)/(4) , find tan 2 alpha .

If cot (alpha + beta) = 0 , then sin (alpha + 2 beta) is equal to

If cos(alpha+beta)=4/5; sin(alpha-beta)=5/13 and alpha,beta lie between 0&pi/4 then find the value of tan2alpha

If cos(alpha+beta)=(4)/(5) and sin(alpha-beta)=(5)/(13) , where alpha lie between 0 and (pi)/(4) , then find that value of tan2alpha .

If sin (alpha + beta) = 4/5 , sin (alpha -beta) = (5)/(13), alpha + beta , alpha - beta being acute angles prove that tan 2 alpha = (63)/(16).

If sin(alpha+beta)=1 and sin(alpha-beta)=1/2 , where 0lt=alpha, betalt= pi/2 , then find the values of tan(alpha+2beta) and tan(2alpha+beta) .

If alpha = cos^(-1)((3)/(5)), beta = tan ^(-1)((1)/(3)) , where 0 lt alpha, beta lt (pi)/(2) , then alpha - beta is equal to