Home
Class 12
MATHS
The magnitude of the projection of the v...

The magnitude of the projection of the vector `2hati+3hatj+hatk` on the vector perpendicular to the plane containing the vectors `hati+hatj+hatk" and "hati+2hatj+3hatk`, is

A

`sqrt((3)/(2))`

B

`3sqrt(6)`

C

`(sqrt(3))/(2)`

D

`sqrt(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the magnitude of the projection of the vector \( \mathbf{A} = 2\hat{i} + 3\hat{j} + \hat{k} \) onto the normal vector of the plane formed by the vectors \( \mathbf{B} = \hat{i} + \hat{j} + \hat{k} \) and \( \mathbf{C} = \hat{i} + 2\hat{j} + 3\hat{k} \). ### Step 1: Find the normal vector to the plane The normal vector \( \mathbf{N} \) to the plane can be found using the cross product of vectors \( \mathbf{B} \) and \( \mathbf{C} \). \[ \mathbf{N} = \mathbf{B} \times \mathbf{C} \] Calculating the cross product: \[ \mathbf{B} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{C} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \] Using the determinant method for the cross product: \[ \mathbf{N} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix} \] Calculating the determinant: \[ \mathbf{N} = \hat{i} \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 1 \\ 1 & 3 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} \] Calculating the minors: \[ \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} = (1)(3) - (1)(2) = 1 \] \[ \begin{vmatrix} 1 & 1 \\ 1 & 3 \end{vmatrix} = (1)(3) - (1)(1) = 2 \] \[ \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = (1)(2) - (1)(1) = 1 \] Thus, we have: \[ \mathbf{N} = \hat{i}(1) - \hat{j}(2) + \hat{k}(1) = \hat{i} - 2\hat{j} + \hat{k} \] ### Step 2: Find the magnitude of the normal vector The magnitude of the normal vector \( \mathbf{N} \) is given by: \[ |\mathbf{N}| = \sqrt{1^2 + (-2)^2 + 1^2} = \sqrt{1 + 4 + 1} = \sqrt{6} \] ### Step 3: Find the projection of \( \mathbf{A} \) onto \( \mathbf{N} \) The projection of vector \( \mathbf{A} \) onto vector \( \mathbf{N} \) is given by the formula: \[ \text{proj}_{\mathbf{N}} \mathbf{A} = \frac{\mathbf{A} \cdot \mathbf{N}}{|\mathbf{N}|^2} \mathbf{N} \] Calculating the dot product \( \mathbf{A} \cdot \mathbf{N} \): \[ \mathbf{A} \cdot \mathbf{N} = (2\hat{i} + 3\hat{j} + \hat{k}) \cdot (\hat{i} - 2\hat{j} + \hat{k}) = 2(1) + 3(-2) + 1(1) = 2 - 6 + 1 = -3 \] Now, substituting into the projection formula: \[ \text{proj}_{\mathbf{N}} \mathbf{A} = \frac{-3}{|\mathbf{N}|^2} \mathbf{N} = \frac{-3}{6} \mathbf{N} = -\frac{1}{2} \mathbf{N} \] ### Step 4: Find the magnitude of the projection The magnitude of the projection is: \[ \left| \text{proj}_{\mathbf{N}} \mathbf{A} \right| = \left| -\frac{1}{2} \mathbf{N} \right| = \frac{1}{2} |\mathbf{N}| = \frac{1}{2} \sqrt{6} \] ### Final Answer Thus, the magnitude of the projection of the vector \( 2\hat{i} + 3\hat{j} + \hat{k} \) on the vector perpendicular to the plane is: \[ \frac{\sqrt{6}}{2} \]

To solve the problem, we need to find the magnitude of the projection of the vector \( \mathbf{A} = 2\hat{i} + 3\hat{j} + \hat{k} \) onto the normal vector of the plane formed by the vectors \( \mathbf{B} = \hat{i} + \hat{j} + \hat{k} \) and \( \mathbf{C} = \hat{i} + 2\hat{j} + 3\hat{k} \). ### Step 1: Find the normal vector to the plane The normal vector \( \mathbf{N} \) to the plane can be found using the cross product of vectors \( \mathbf{B} \) and \( \mathbf{C} \). \[ \mathbf{N} = \mathbf{B} \times \mathbf{C} \] ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 10| JEE -2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|6 Videos
  • JEE MAIN REVISION TEST - 1 | JEE - 2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 12

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If the magnitude of the projection of the vector hati-hatj+2hatk on the vector perpendicular to the plane containing the vectors 2hati+hatj+3hatk and hati-hatj-2hatk is k, then the value of (1)/(k^(2)) is equal to

The projection of the vector hati+hatj+hatk along the vector of hatj is

find the projection of the vector hati+3hatj+7hatk on the vector 7hati-hatj+8 hatk

What is the unit vector perpendicular to the following vectors 2hati+2hatj-hatk and 6hati-3hatj+2hatk

Find a unit vector perpendicular to each of the vectors hati+2hatj-3hatk and hati-2hatj+hatk .

Find the projection of the vector hati-2hatj+hatk on the vector 4hati-4hatj+7hatk .

Find a unit vector perpendicular to both the vectors hati-2hatj+hatk and hati+2hatj+hatk .

Find a unit vector perpendicular to each one of the vectors vec a =4hati -hatj +3hatk and vecb =3 hati +2hatj -hatk

Find a unit vector perpendicular to the plane of two vectros. veca=hati-hatj+2hatk and vecb=2hati+3hatj-hatk

Find a unit vector perpendicular to both the vectors (2hati+3hatj+hatk) and (hati-hatj+2hatk) .