Home
Class 12
MATHS
If 2y=(cot^(-1) ((sqrt3cosx+sinx)/(cosx-...

If `2y=(cot^(-1) ((sqrt3cosx+sinx)/(cosx-sqrt3sinx)))^2, x in (0,pi/2)`then y' is equal to

A

(a)`2x-pi/3`

B

(b)`pi/6-x`

C

(c)`x-pi/6`

D

(d)`pi/3-x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we start with the equation provided: Given: \[ 2y = \left( \cot^{-1} \left( \frac{\sqrt{3} \cos x + \sin x}{\cos x - \sqrt{3} \sin x} \right) \right)^2 \] ### Step 1: Simplifying the Argument of Cotangent We can rewrite the expression inside the cotangent inverse using the tangent addition formula. Notice that: \[ \frac{\sqrt{3} \cos x + \sin x}{\cos x - \sqrt{3} \sin x} = \frac{\tan\left(\frac{\pi}{3}\right) \cos x + \sin x}{\cos x - \tan\left(\frac{\pi}{3}\right) \sin x} \] This resembles the tangent addition formula: \[ \tan(a + b) = \frac{\tan a + \tan b}{1 - \tan a \tan b} \] where \( a = \frac{\pi}{3} \) and \( b = x \). Thus, we can express: \[ \cot^{-1} \left( \frac{\sqrt{3} \cos x + \sin x}{\cos x - \sqrt{3} \sin x} \right) = \frac{\pi}{2} - \tan^{-1} \left( \tan\left(\frac{\pi}{3} + x\right) \right) = \frac{\pi}{3} + x \] ### Step 2: Substitute Back into the Equation Now substituting back into the equation for \( 2y \): \[ 2y = \left( \frac{\pi}{3} + x \right)^2 \] ### Step 3: Expand the Square Expanding the square: \[ 2y = \left( \frac{\pi}{3} + x \right)^2 = \left( \frac{\pi^2}{9} + \frac{2\pi}{3}x + x^2 \right) \] ### Step 4: Solve for y Now, divide both sides by 2: \[ y = \frac{\pi^2}{18} + \frac{\pi}{3}x + \frac{x^2}{2} \] ### Step 5: Differentiate y with Respect to x Now, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx} \left( \frac{\pi^2}{18} + \frac{\pi}{3}x + \frac{x^2}{2} \right) \] Calculating the derivative: \[ \frac{dy}{dx} = 0 + \frac{\pi}{3} + x \] ### Final Result Thus, the derivative \( y' \) is: \[ y' = \frac{\pi}{3} + x \]

To solve the given problem step by step, we start with the equation provided: Given: \[ 2y = \left( \cot^{-1} \left( \frac{\sqrt{3} \cos x + \sin x}{\cos x - \sqrt{3} \sin x} \right) \right)^2 \] ### Step 1: Simplifying the Argument of Cotangent We can rewrite the expression inside the cotangent inverse using the tangent addition formula. Notice that: ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 10| JEE -2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|6 Videos
  • JEE MAIN REVISION TEST - 1 | JEE - 2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 12

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If sinx+cosx=sqrt7/2 where x in[0,pi/4] then tan(x/2) is equal to

If (sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))=cot(a+x/2) and x in (pi,2pi) then 'a' is equal to :

cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=(x)/(2), x in (0,(pi)/(4))

int_0^(pi/2)(sqrt(sinx))/(sqrt(sinx)+sqrt(cosx)) dx

int_0^(pi/2)(sqrt(sinx))/(sqrt(sinx)+sqrt(cosx)) dx

If y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))] , (0 lt x lt pi/2) , then (dy)/(dx)=

If y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))] , (0 lt x lt pi/2) , then (dy)/(dx)=

int(sinx-cosx)/(sqrt(1-sin2x))e^(sinx)cosx dx is equal to

" If "y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))](0ltxltpi//2)," then "(dy)/(dx)=

If y=(sinx+cosx)/(sinx-cosx) , then (dy)/(dx) at x=0 is equal to